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INTRODUCTION

The University of Michigan’s (UM) Mobile Robotics Lab has specialized for over 11 years
in the area of mobile robot obstacle avoidance. UM’s obstacle avoidance systems have been
implemented successfully on a large variety of mobile robots, on a power wheelchair, on a
portable system for the blind, and on a novel, wheeled guidance device for the blind, called
GuideCane. Common to all of these systems is the need for fast obstacle avoidance, on the
order of 1 m/s or faster. UM has demonstrated the ability of its systems to function at such
speeds, and we believe that UM’s reflexive obstacle avoidance systems are the fastest of
their kind (i.e., performing near-range, ultrasonic sensor-based, reflexive obstacle
avoidance).

CARMEL II: 24 sonars, 0.8 m/s.

Labmate (foreground) zaps through an obstacle course
at 1 m/s, while CARMEL (background) “paints” the
environment with ultrasonic noise.

LabMate: 8 – 12 sonars,
1.0 m/s.

NavChair: 12 sonars,
1.2 m/s.

SWAMI Jr.: 8 sonars,
narrow-isle navigation.

NavBelt: portable device
for the blind, 8 sonars.

GuideCane: 10 sonars,
0.7- 1.0 m/s OmniMate: 32 sonars, 0.5 m/s omnidirectional motion.
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One key component of UM’s obstacle avoidance systems is a very sophisticated sonar
firing algorithm, called Error Eliminating Rapid Ultrasonic Firing (EERUF). With
EERUF individual sonars can detect and reject false readings caused by stray echoes from
other sonars onboard (i.e., crosstalk) or off-board (i.e., from other mobile robots), or even
from ultrasonic noise in the environment (i.e., gun fire in an urban combat scenario).

To avoid crosstalk, conventional methods mandate lengthy waiting periods in-between
firing individual sonars, to allow the echo of each sonar to abate before the next sensor is
fired. Conventional systems are also susceptible to ultrasonic noise from other sources
(such as other mobile robots). With EERUF, on the other hand, about 97% of crosstalk
and other ultrasonic noise is detected and rejected, allowing for substantially faster firing,
and hence, faster travel.

For a recent development of UM’s Mobile Robotics Lab, the GuideCane1 guidance
device for the blind, a new “hardware-only” implementation of EERUF was developed.
This work is of immediate applicability to the current DARPA BAA 98-08 because the
basic functionality requirement – reflexive obstacle avoidance in indoor and outdoor
environments at speeds above 1 m/s – is the same for both applications. The size-, weight-,
and power-limitations are also essentially the same for both applications.

This document provides technical details on UM’s “hardware-only” implementation of
the EERUF method. However, the EERUF implementation is only one part of UM’s so-
called Micro-Controller Interface Board (MCIB), which also provides numerous other
relevant low-level control functions.

Table I: Similarity between UM’s GuideCane and the Pioneer AT platform. The scale is roughly the same
for both pictures.

Size: 50-cm class
Speed: > 1m/s
Obstacle Avoidance: 10+ sonars
Environment: Indoor/outdoor

Size: 50-cm class
Speed > 1m/s
Obstacle Avoidance 7+ sonars
Environment: Indoor/outdoor

                                               
1 The GuideCane recently won the 1998 Discover Magazine Award for Technological Innovation, in

the  robotics category.



3

THE ELECTRONIC HARDWARE

This section explains the hardware components of The University of Michigan’s (UM)
Micro-Controller Interface Board (MCIB). To better understand the function of the
device, we first present an overview which shows how the board is going to be used in
UM’s Part A development effort under BAA 98-08. UM’s system, which is based on the
RWI Pioneer AT mobile platform, is called “MOVERS.”

1.1 System Overview

MOVERS’ System architecture is shown in Figure 1. The main onboard computer is a
Toshiba Libretto 100 CT mini-notebook. For simplicity we will refer to it as the “PC” in
the remainder of this document. The PC, shown in Figure 2, is a full featured Windows
95/98 enabled laptop of diminutive size. It features a 166 MHz Pentium processor, 32 MB
RAM, and a 2.1 GB harddisk. The foremost advantage of this type of PC over widely used
embedded controllers of the equally diminutive PC 104 format family is the built-in 7.4”
LCD active matrix color display and a keyboard. During development the availability of an
onboard monitor and keyboard are invaluable.

The PC is connected to a University of Michigan (UM) custom-built Micro-Controller
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Figure 1: System overview. The Micro-Controller Interface Board (MCIB) uses three 68HC11 chips to
read-and pre-process most of the onboard navigation sensors.
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Interface Board (MCIB) through its bi-directional parallel port. The MCIB serves as the
interface between the PC and most of the sensors and actuators. The MCIB consists of
three MC68HC11E2 micro-controllers, four counters, and some logic devices.

The MCIB executes many time-
critical tasks, which would take too
many resources if executed by the
main PC. The MCIB receives
commands from the PC and then
takes care of the sensors and
actuators without any further
involvement of the PC. Most of the
sensor data is preprocessed by the
MCIB before being communicated
to the PC. This approach minimizes
the bandwidth requirements for the
communication between the PC and
the MCIB, and it reduces the
computational power required by
the PC to control the sensors and
actuators.

1.2 The Electronic
Interface

The architecture of the MCIB is shown in Figure 3. The communication between the PC
and the MCIB is based on the PC’s standard parallel port. The parallel port consists of an
8-bit bi-directional data bus, four digital outputs and five digital inputs. In the present
design all but two digital inputs are in use. The 8-bit bi-directional data bus together with
the four digital outputs and an additional 3-8 decoder allows the PC to communicate with
the master micro-controller, the First-In-First-Out (FIFO) register, and the HCTL
quadrature decoders. Two of the digital inputs are used for the handshaking with the
HC11. Another digital input is used to supervise a FIFO flag. This bus architecture permits
parallel communication at high speed. Furthermore, most communications are buffered to
minimize delays. The (currently wire-wrapped) prototype of the MCIB is shown in Figure 4
and the new printed circuit board design in Figure 5.

1.2.1 The MC68HC11 Micro-controller

The master- and the two slave micro-controllers are identical Motorola MC68HC11s.
The block-diagram of a typical MC68HC112 is shown in Figure 6.

                                               
2 Motorola, M68HC11 Reference Manual, 1991.

Figure 2: The Toshiba Libretto 100 CT is a 2.2-pound
miniature notebook computer that serves as the main onboard
PC. It features a 166 MHz Pentium processor, 32 MB RAM,
and a 2.1 GB harddisk.
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The peripheral functions of the MC68HC11 include:

•  Eight-channel A/D converter with an eight bit resolution.

•  Asynchronous serial communications interface (SCI).

•  Synchronous serial peripheral interface (SPI).

• 16-bit timer with three input-capture lines, five output-compare lines and a real-time
interrupt function.

•  An 8-bit pulse accumulator can count external events or measure external periods.

• Self-monitoring circuitry: watchdog, clock monitor system and illegal opcode detection.

M
ai

n
 P

C
 -

 P
ar

al
le

l P
o

rt

Counter 1
HCTL 2016

Counter 2
HCTL 2016

Counter 3
HCTL 2016

Counter 4
HCTL 2016

FIFO
7202

Main HC11

HC11
Sonars 1-8

HC11
Sonars 9-16

Decoder
74HCTL138

A
B
C

1
2
3

/SEL
/OE

/SEL
/OE

/SEL
/OE

/SEL
/OE

Y0
Y1
Y2
Y3
Y4
Y5

15

3

4
3

4

3
4

3
4

14
13
12
11
10

/STRA
/STRBMODE MODE

/R
/EF

/R FIFO

PD5 PD5

PA3 PA3

BUS!/?

PB5
PB6

25 2536
35

/SS1
/SS2

/W /W FIFO

/STROBE
/AUTOFD

/INIT

1
14
16

/SEL 17

15
/ERROR

/ACK

BUSY

10

11

18

2

24

/EF

/EF

4
6

/OE CNT1

/OE CNT2

/OE CNT3

/OE CNT4

/SEL CNT

/STRB

PB438

31 31

8-bit SONAR DATA

SPI

8-bit BUS

Wheel 
Encoder 1

Wheel 
Encoder 2

Wheel
Encoder 3

Wheel
Encoder 4

HC11_board_new.cdr, 7/6/98
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• Two software-controlled power-saving
modes, WAIT and STOP, are available to conserve power.

The MC68HC11 name actually refers to a family of advanced 8-bit micro-controllers3.
The difference between the MC68HC11 family members lies mainly in the amount and kind
of memory. The version used here is the MC68HC11E2, which has 2 K of EEPROM
(more than any other family member). For simplicity we will refer to this chip as the
“HC11” in the remainder of this document.

Since the HC11 bus runs at only 2 MHz and EEPROM space is limited, it is preferable
to program it in assembly instead of a higher level language. Fortunately, the HC11 has a
quite comprehensive, orthogonal instruction set. As the software can be stored in the
internal EEPROM, the micro-controller can be used in single-chip mode with no external
memory.

1.2.2 The HC11 Master

A simplified diagram of the HC11 Master is shown in Figure 7. Port A is used to
generate the PWM signals for up to four motor amplifiers. Three of the four unused pins on
this port are input capture lines available for future extensions. The fourth currently not
used pin is the pulse accumulator input.

Port B is used to independently reset the other logic devices on the MCIB, to select one
of the two HC11 slaves, and for hand-shaking with the PC. Port C together with the R/W
and AS lines is used to communicate with the PC over its bi-directional parallel port.

                                               
3 Motorola, M68HC11 Reference Manual, 1991.

Figure 4: The (currently wire-wrapped) prototype of
the Micro-Controller Interface Board (MCIB)
measures about 5”x5”.
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The asynchronous serial communications interface (SCI) of Port D is used to download
the program from the PC into the HC11’s internal EEPROM. For future extensions, a
standard serial port device can be connected to this port.

The synchronous Serial Peripheral Interface (SPI) is used to communicate with the two
HC11 slaves (see Section 1.2.5, below). Additional SPI devices can also be added easily to
the current architecture.

Port E is the eight-channel A/D converter with eight bits of resolution. In the present
design one of the eight analog inputs will be used for the electronic compass and two
analog inputs will be used for the tilt sensors.

Figure 6: The MC68HC11A8 block diagram
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The E signal, a clock output running at 2 MHz, is used to drive the quadrature decoder
devices (see Section 1.2.7, below).

1.2.3 The HC11 Slaves

A simplified diagram of an HC11 slave is shown in Figure 8. Both slaves are identically
integrated into the hardware system. However, there are a few minor differences in their
software. Because of  the limited number of input and output lines and because of speed
considerations, each HC11 slave operates only eight of the maximal possible 16 sonars.

Four outputs of Port A together with a double 2-4 decoder are used to generate the
eight BINH signals for the sonars. Port B is used to generate the fire signals for the sonars.
Port C together with PA3 is used in an open-collector mode to write the sonar results into
the FIFO. Port D is used the same way as for the master HC11. The R/W and PA0 signals
are used to synchronize the access to the FIFO bus.
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1.2.4 The PC - HC11 Communication

The communication between the PC and the HC11 micro-controllers is done through
the master HC11 and the FIFO. The communication between the PC and the master HC11
is based on handshaking supported by the HC11 hardware. The procedure of writing a
command (from the PC) to the master HC11 is explained in Section 1.2.4.1. The procedure
of reading from the master HC11 is explained in Section 1.2.4.2.

The PC can not communicate directly with the two HC11 slaves. To send a command to
the HC11 slaves, the PC sends the command to the master HC11 which will then send it to
the HC11 slaves through the SPI as explained in Section 1.2.5. To read the sonar data from
the HC11 slaves, the PC reads the buffered data from the FIFO as explained in Section
1.2.6.

1.2.4.1 The Write Command

The timing diagram for a write command is shown in Figure 9. The STRB signal is
automatically generated by the HC11 hardware. The STRA signal and the data are
controlled by the PC through its software. The STAF is an internal flag of the HC11. The
ReadPORTCL represents the corresponding HC11 software command .

Normally, the master HC11 is in input mode waiting for a new command from the PC.
The STRB signal indicates to the PC that the HC11 buffer is ready for a new command
byte. It is important to note that even though the HC11 may be busy executing some task,
the PC can latch a command byte into the HC11 buffer whenever the buffer is empty. This
asynchronous communication allows the system to take full advantage of the
multiprocessor architecture.

Figure 8: The HC11 Slave(s).
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If the STRB signal is high, the PC can output the command data on the bus and latch it
into the HC11 buffer by asserting the STRA signal (falling edge). This operation will
automatically deassert the STRB signal indicating to the PC that the HC11 buffer is full. It
will also assert the STAF flag, which tells the HC11 that there is new data in its buffer.
When the HC11 detects that the STAF is asserted, it will read the data from the buffer. This
action will deassert the STAF flag and automatically assert the STRB signal. The asserted
STRB signal indicates to the PC that the HC11 is ready for another command. Meanwhile,
the HC11 interprets the new command byte and executes the desired operation.

To minimize the communication delays, it is preferable to send only one byte for each
command to the HC11. As long as only one byte is sent, the PC can simply latch it into the
HC11 buffer without waiting for the HC11. If the command consisted of two bytes, two
consecutive writings would be necessary, but these can not be handled by the HC11
hardware alone. In such a case, the PC could still latch the first byte into the HC11 buffer,
but it would then have to wait for the HC11 to read this byte out of its buffer before
sending the second byte.

In the current implementation, all commands are encoded in one byte as summarized in
Table II.

1.2.4.2 The Read Command

The timing diagram for a read command is shown in Figure 10. All signals have the
same meaning as in the previous section. In addition, the Mode signal indicates to the PC if
the master HC11 is in the input or output mode, and the WritePORTCL represents the
corresponding HC11 software command.

To read a byte from the HC11, the PC first has to send a command to the HC11
indicating the desired information. Therefore, the entire communication consists of a write
operation followed by a read operation. The write operation is identical to the process
described in the previous section. However, once the command byte is interpreted, the
HC11 retrieves the desired information and puts it into an internal register. This
automatically changes the HC11 port to a readable output mode and deasserts STRB. To

Figure 9: Timing diagram for the Write command
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indicate to the PC that the data
is ready, the Mode signal is set
high. The PC then reads the data
and asserts STRA indicating to
the HC11 that it received the
data. The STRA signal also
automatically resets the HC11
output port into an input port to
liberate the data bus for other
communications. The HC11
then clears the STAF flag by
reading its buffer, and deasserts
the Mode signal to indicate to
the PC that it is ready for a new
command.

This mode is currently not
used. For future extensions, this
mode will be useful to read
additional sensors connected to
the master HC11 analog port. It
will also be useful to read data
from devices that can be
connected to the master HC11’s
SPI or SCI port.

Figure 10: Timing diagram for the Read command

Command Byte Command

1xxx’xxxx Position of main servo (128 positions)

0000’xxxx Activate resets on Port B (PB0-PB3)

0001’xxxx EERUF modes (1-15) and stop sonars (0)

0010’xxxx Fire single sonar (index 0-15)

0011’xxxx Not used yet (16 values)

0100’xxxx Right brake command (16 positions)

0101’xxxx Left brake command (16 positions)

0110’xxxx Main servo speed (16 values)

0111’0000 Read potentiometer of steering axis

0111’xxxx Not used yet (15 values): xxxx ≠ 0

Table II: Command bytes that can be sent from the PC to the
master HC11.
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1.2.5 The SPI Communication

Both HC11 slaves are connected to the master HC11 through the synchronous Serial
Peripheral Interface (SPI). The SPI interface is used primarily to allow the micro-
controller to communicate with peripheral devices. Peripheral devices range from simple
shift registers to complete subsystems, such as an A/D converter or another HC11. The SPI
system is flexible enough to interface with numerous standard peripherals from several
manufacturers. Data rates as high as 1 Mbit/sec are accommodated with one of the HC11
as the SPI master.

An example with four SPI devices connected to the master HC11 is shown in Figure 11.
In the current interface architecture, there are only two SPI slaves. The master HC11 acts
as the SPI master while the two HC11 slaves act as SPI slaves. This architecture allows
one to easily add more SPI devices for future extensions.

During an SPI transfer, an 8-bit character is shifted out one data pin while an 8-bit
character is simultaneously shifted in a second data pin. So, one byte is simultaneously
transmitted and received. The serial clock line (SCK) synchronizes shifting and sampling of
the information on the two serial data lines (MOSI and MISO). The slave select line (SS)
allows individual selection of a SPI slave.

The use of the SPI is extremely simple as it is fully supported by the HC11 hardware.
All SPI transfers are started and controlled by a master SPI device, in this case the master
HC11. To transfer a byte to an HC11 slave, the master HC11 simply asserts the

Figure 11: Implementation example for the synchronous Serial Peripheral
Interface (SPI) architecture, here shown with four slaves (the MCIB uses
only two slaves.)
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corresponding slave select signal and writes the byte into its SPDR register. The hardware
of the two involved HC11s then takes care of the communication. At the end of the
communication, the bytes that were originally stored in the two SPDR registers are
swapped. To indicate the end of the SPI communication, the SPIF (SPI Transfer Complete
Flag) is asserted.

1.2.6 The FIFO

The interface is equipped with a FIFO whose purpose is to buffer the outputs of the two
HC11 slaves. The currently used FIFO is a high-density first-in first-out buffer with a depth
of 1024 bytes. This buffer allows the HC11 slaves to write their data into the FIFO
whenever they have a sonar reading as explained in Section 1.2.6.1. It also allows the PC to
read the sonar data from the FIFO whenever the PC wants to, as explained in Section
1.2.6.2. Hence, due to the FIFO, the PC can asynchronously read the data from the HC11
slaves. This buffered communication allows the architecture to take full advantage of its
distributed computing power.

1.2.6.1 The HC11 - FIFO Communication

The two HC11 slaves share an output bus and the /W FIFO output to write the sonar
data into the FIFO. To avoid access conflicts, the HC11 slaves use their Bus? and Bus!
lines. The Bus! output of each slave is connected to the Bus? input of the other slave.
Asserting the Bus! output means that the slave is in control of the bus or that it desires to
be in control. A problem only occurs when both slaves try to take control of the bus
simultaneously. To resolve this
conflict, the first slave is given
priority. The algorithms for the
two slaves are shown in Figure
12. The precedence of the first
slave over the second one is
realized by the different
reaction to the case when the
result of the second Bus?
inquiry is positive.

If this method failed for
whatever reason, one or both
slaves could become damaged
by short-circuiting each other.
To eliminate this risk, however
unlikely it is, the nine shared
output lines are used in an
open-collector mode with pull-
up resistors. Therefore, if both
slaves put their data on the
shared bus no damage would a b

Figure 12: FIFO bus control for: a) slave 1and b) slave 2
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occur. The only effect would be that wrong data would be written into the FIFO. However,
in most cases, this would be detected by the PC reading the wrong data from the FIFO.

1.2.6.2 The PC - FIFO Communication

The PC can easily determine if there is any data in the FIFO by checking the FIFO’s
“empty flag” (EF). If the EF flag is deasserted, the PC knows that there is new sonar data
in the FIFO. The PC can then read out all sonar data by continuing reading until the EF flag
asserts again. This method is very efficient, as the PC only has to check one input line to
determine if new sonar data is available.

The PC could also be connected to the “half full” (HF) and “full full” (FF) flags of the
FIFO. These flags are currently not used to save some of the parallel port input lines for
future extensions. The HF could be used to tell the PC that it should read out the FIFO
data. If the FF flag was asserted, it would indicate that probably a data overflow occurred
because the PC waited too long before reading the FIFO. The PC would then have to send
a reset command to the master HC11 to reset the two slaves and the FIFO. Next, the PC
would have to send the command to start the sonars again. Therefore, if for whatever
reason the FIFO filled up, the PC would instantly be aware of the problem and could go on
without any interaction by the user.

A potential problem of the parallel port is “ringing.” Misreadings due to ringing occur if
the FIFO lines are directly connected to the PC parallel port. To eliminate ringing, each of
the eight data lines is terminated by a resistor/capacitor network.

1.2.6.3 FIFO Data Encoding

Since both operations, writing to- and reading from the FIFO, are very fast, there is no
need to encode the sonar data in as few bytes as possible. For each sonar reading, five bytes
are transmitted:

1.  Start byte, currently $604.

2.  Sonar index between 1 and 16.

3.  High byte of 16 bit time of flight in increments of 8 µs.

4.  Low byte of 16 bit time of flight in increments of 8 µs.

5.  Stop byte, currently $80.

The start and stop bytes are not necessary, but they increase the probability of detecting
a communication problem. Even without these two bytes, the PC could detect a problem by
verifying that the sonar index is between 1 and 16. Since the extra time required by the start
and stop bytes is negligible, these two bytes are kept for safety reasons.

                                               
4 The ‘$’ symbol indicates that the following number is in hexadecimal format.
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1.2.7 The HCTL Quadrature Decoders

The output of each encoder consists of two quadrature signals. By quadrature decoding
these two signals, the encoder resolution is multiplied by a factor of four as each edge,
rising and falling, is taken into account. However, quadrature decoding is a time-intensive
task with restricting requirements.

A very effective and simple solution is the use of the HCTL quadrature decoder
interface integrated circuits from Hewlett Packard. The HCTL-2016 features full
quadrature encoding with a 16-bit up/down counter, latched outputs, and high noise
immunity due to Schmitt trigger inputs and digital noise filters. Moreover, due to the 8-bit
tristate output, the two quadrature encoders can simply be connected to the 8-bit PC-
interface bus.

The quadrature decoders require a clock signal. Rather than adding some clock
circuitry, the E output of the master HC11 is used instead. The E output is a clock signal
with a frequency of 2 MHz. To read the 16-bit content of the counter, the low and high
bytes can be accessed independently by the use of the SEL signal as shown in Figure 13.

Figure 13: Timing of quadrature decoder reading
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2. THE MCIB SOFTWARE

Although we describe the MCIB as a “hardware only” implementation (because it can be
used as such by third party developers, the HC11s micro-controllers require, of course,
some operating software. Software for the master and slave units is discussed in this
section.

2.1 The Master HC11 Software

The master HC11 takes care of most of the communications, samples up to eight analog
inputs, resets other devices, and generates the PWM signals for the motors. Since these
tasks have different time constraints, the software is organized in a multi-tasking
architecture. The tasks running in parallel are summarized in Table III.

Table III: Master HC11 tasks

# Task Type Time constraints

1
Execute command
as requested by PC

Main program Low

2
Generation of PWM
signals

Software interrupt: OC1
Hardware interrupts: OC2 - OC5

Every 20 ms

3
Continuous A/D
conversions

Software interrupt: OC2 Every ~20 ms
(when PA6 goes high)

In the current implementation, the main program is interrupted about every 20 ms by
tasks #2 and #3. Because the interrupt service routines are small most of the computing
power is reserved for the main program. Currently, only a small portion of the master
HC11’s computing power is used, so that there is enough computing power and program
space left for future extensions.

2.1.1 Task #1 - Communication and Program Execution

The main program spends most of its time waiting for a new command byte from the
PC. When it receives a new command, it will decode it according to Table II (see page 11)
and execute it. If the command is for the motors, the HC11 will put the corresponding
value in an internal register, which will be read later by the PWM interrupt routine (see task
#2).

If the PC needs to know the value of an analog input, the HC11 can simply read the
value from the last A/D conversion and send it back to the PC trough handshaking as
explained in Section 1.2.4.
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If the command is for one of the HC11 slaves, the master HC11 will send it to them
trough the SPI line as explained in Section 1.2.5.

2.1.2 Task #2 - Generation of the PWM Signals

Task #2 generates the PWM signals for up to four motors. Specifications for the PWM
signals required to drive the Pioneer AT’s power amplifiers were not available at the time
of writing this document. For this reason we will assume here a typical PWM control signal
that repeats every 20-30 ms with a variable pulse width ranging from 1 to 2 ms in duration:

The generation of these signals can be implemented by two different methods. In the
first method, the master HC11 generates the PWM signals with a 32.77 ms period. Even
though this period is higher than the typical period, the PWM amplifier will still work
properly. The reason for the choice of this particular period is that the internal timer of the
HC11 overflows after 32.77 ms. Therefore, the PWM signals can be generated based on
hardware interrupts only, without requiring any software interrupt servicing. This is very
efficient, as it takes no computation power of the HC11. However, if a new command with
a smaller pulse width is given to the HC11 in the time span between the falling edges of the
new and old command, the PWM signal will stay high for an entire period. Since the critical
time span is rather small, this problem occurs rarely. If it happens, the effect is small as the
momentarily wrong command is filtered by the inertia of the motors and platform body.

In the second method, the PWM signals are generated with the typical period of 20 ms.
This method eliminates the potential problem of the first method. It is also advantageous
over the first method if the sampling rate of the UM software is smaller than 32.77 ms. As
a disadvantage, this method requires software interrupt servicing, and therefore takes some
computation power of the HC11. However, since the interrupt service routine is small and
the master HC11 has more than enough computation power for its other tasks, the second
method was implemented as it is safer and allows higher sampling rates.

This second method can be implemented with the HC11 output compare functions.
These real-time interrupt functions allow one to efficiently implement up to four PWM
signals. In the Pioneer AT configuration, two (or four5) PWM signals will be used. A basic
and an enhanced method of implementation are shown in Figure 15.

                                               
5 UM will investigate the feasibility of its newly proposed method for detecting wheel slippage on the

Pioneer AT: Taking advantage of the four built-in motors of the Pioneer AT, UM will decouple the
currently mechanically linked wheel pairs on each side of the platform and drive each wheel independently.

Figure 14: Typical PWM control signal (may be different on actual
Pioneer AT).



18

With the basic method, the OC1 (output compare 1) hardware interrupt is used to
simultaneously generate the rising edges of the two (or four) PWM signals every 20 ms.
The OC2-OC5 hardware interrupts are used for the falling edges of the four respective
PWM signals.

In the enhanced method, the OC1 hardware interrupt is used to simultaneously generate
the falling edges of the two (or four) PWM signals every 20 ms. The OC2-OC5 hardware
interrupts are used for the rising edges of the respective PWM signals.

With both methods, only the OC1 interrupt is serviced. This interrupt service routine
calculates the output compare timer values for the next set of events and writes them to the
corresponding registers. For the basic method, as shown in Figure 15, these values must be
updated no later than 1 ms after the OC1 interrupt occurred. In the current implementation,
1 ms is more than sufficient. However, if the master HC11 has to take care of more parallel
tasks in future extensions, this time limit could be a problem. With the enhanced method,
the time limit is 18 ms, so that there should be no problem even if several more tasks were
added. For this reason, the enhanced method was implemented.

a b
Figure 15: Generation of PWM signals: a) basic method, b) enhanced method

2.1.3 Task #3 - Continuous A/D Conversions

Analog-to-digital (A/D) conversion of signals will likely be necessary for some of the
auxiliary sensors, such as UM’s proposed 2-axis tilt sensor and, possibly, for a KVH
fluxgate compass. The master HC11 can read the analog output values of these sensors.
The conversion has to be triggered by an internal command or by the rising edge of an
external signal. In our current implementation the signal is generated by the OC2 hardware
interrupt, that is, the OC2 interrupt service routine is used to sample the signal at that
specific time.

                                                                                                                                        
Then, using an additional set of wheel encoders (currently only the two front motors have encoders),
conclusions about wheel slippage can be drawn by comparing the encoder readings from all four wheels.
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In the current implementation analog signals are actually converted four consecutive
times. Once the A/D conversion is started by the OC2 interrupt service routine, the HC11
hardware automatically makes these four conversions in a time interval of only 64 µs.

 The results of these conversions are stored in registers, which can be read by task #1.
These four measurements are averaged before being sent to the PC.

2.2 The HC11 Slave EERUF Implementation

One of the foremost advantages of the MCIB is its built-in implementation of the
EERUF algorithms for crosstalk and noise rejection with ultrasonic sensors. This section
discusses some of the implementation details, but not the theoretical background for this
approach.

2.2.1 The Multitasking Architecture

Because of the limited number of available input/output lines and because of concerns
over the speed of program execution for the time-sensitive EERUF algorithm, one HC11 is
dedicated for each group of eight ultrasonic sensors. In the current implementation there
are two such slave HC11s, allowing a total of 16 ultrasonic sensors to be controlled
accurately. Each slave HC11 has to accomplish several tasks at different rates and with
different time constraints. To implement this efficiently, the slave HC11 software is also
organized in a multi-tasking architecture. The four different tasks with their properties are
summarized in Table IV:

Table IV: slave HC11 tasks

# Task Type Time constraints

1 Compute TOF and write
into FIFO

Main program Low

2 Generate fire signals
and set time for next
BINH interrupt

Software interrupt: OC4 13 times in 200 ms
according to EERUF
schedule

3 Check echo signals Software interrupt: OC5 Every 50 µs

4 Generate BINH signals Hardware interrupt: OC1 Exactly 0.6 ms after
corresponding fire signal

The main program (task #1) is constantly interrupted by the two software interrupts
(tasks #2 and #3) which generate the fire signals and check the echo signals. The fourth
task (task #4) is supported by the HC11 hardware so that it does not require interrupt
servicing. However, the times at which the BINH signals are changed are set during the
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interrupt servicing of task #2. Tasks #2 and #3 communicate with task #1 through an
internal FIFO buffer and several global variables.

2.2.2 Task #1 - Communications and Treatment of the Buffer

Task #1 reads the internal FIFO buffer containing the data from tasks #2 and #3. It
analyzes this data and computes the time of flight (TOF). This task also takes care of all the
other not time-critical tasks, e.g. the SPI communication with the master HC11.

 The time constraints of task #1 are low. However, if it is not executed often enough,
the internal buffer may overflow. As the timing of task #2 is fixed by the EERUF schedule
and task #4 is only a hardware interrupt, only the timing of task #3 can be changed to
influence the time allocation of task #1. Basically, the higher the execution rate of task #3,
the better the sonar resolution, but also the less time is allocated to task #1, and hence the
higher the risk of an internal buffer overflow. However, tests have shown that task #3 can
even be executed every 25 µs without problems. The algorithm of task #1 is summarized as
following:

1. New request from master HC11? If yes execute, e.g. start sonars, stop sonars, change
EERUF mode, fire single sonar.

2. Check internal buffer. If empty go back to step 1.

3. Read next byte from internal buffer.

4. If the byte is equal to No_Echo, the corresponding sonar(s) has not received back an
echo. Write index and TOF equal to zero into FIFO. Go back to step 1.

5. Otherwise, compute the TOF for corresponding sonar(s). Write index and TOF into
FIFO.

6. Go back to step 1.

2.2.3 Task #2 - The Generation of the Fire Signals

Task #2 is responsible for generating the fire signals and setting the time for the next
BINH interrupt. The fire signals must be generated as specified by the EERUF time
schedule. This task is executed 13 times in an interval of 200 ms. Its algorithm is the
following:

1.  If a fire signal is deactivated, check if the corresponding echo was received. If not,
write the No_Echo byte and the index of the corresponding sonar(s) into the internal
buffer.

2.  Output new fire signals and save time into array p_list_fire[index].

3.  Set time and output for next BINH signal.

4.  Set time for next fire signal event.

5.  Increment EERUF table pointers.

6.  Execute task #3.
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2.2.4 Task #3 - Checking for Echoes

Task #3 is the most time intensive as it checks for new echoes every 50 µs. The more
often this task is executed, the better the sonar resolution. Hence, it is important to make
this routine as short and fast as possible. For this reason, task #3 only checks for new
echoes, but neither identifies the sonar(s) nor computes the TOF. It just saves the current
time and a representative byte into the internal buffer. The representative byte contains bits
set to one for sonars with new echoes. This data is then treated by task #1. The algorithm
of the interrupt service routine is as follows:

1.  Read echoes.

2.  Check for new echoes with: ¬(previous_echoes) ∧ (current_echoes).

3.  If the result is not zero, save it and the current time in internal buffer.

4.  Save current echoes as previous_echoes.

5.  Set time for next interrupt.

2.2.5 Task #4 - The Generation of the BINH Signals

Task #4 is the most time constrained as the BINH signal must be activated exactly
0.6 ms after the fire signal. This can be done by using the hardware interrupt OC1 without
any interrupt servicing. When the HC11 timer becomes identical to the time set in step 3 of
task #2, the OC1 interrupt will automatically output the four bits defined in the same step.
This assures exact activation of the BINH signals independent of other interrupts.

2.2.6 The Fire Signal Table

The original EERUF fire schedule6 is tailored for a sonar system consisting of 12 sonars,
and each sonar is fired once in every 100 ms interval. The difference between two
consecutive sonar echoes must be smaller than 1 ms to be accepted as a valid reading.
These fire signals are generated by task #2 according to the EERUF schedule. For an
efficient software implementation of task #2, the EERUF time schedule is stored in a look-
up table.

                                               
6 Borenstein, J. and Koren, Y., “Error Eliminating Rapid Ultrasonic Firing for Mobile Robot Obstacle

Avoidance”, IEEE Transactions on Robotics and Automation, February 1995, Vol. 11, No. 1, pp. 132-138.


