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ABSTRACT

A new technique for the remote guidance of fast mobile robots has been developed and
implemented. With this method, the mobile robot follows the general direction prescribed by an
operator. However, if the robot encounters an obstacle, it autonomously avoids collision with that
obstacle while trying to match the prescribed direction as closely as possible. This novel
implementation of shared control is completely transparent and transfers control between tele-
operation and autonomous obstacle avoidance gradually. Our method, called tele-autonomous
operation, allows the operator to steer vehicles and robots at high speeds and in cluttered
environments, even without visual contact.

Tele-autonomous operation is based on the Virtual Force Field (VFF) method, which was
developed earlier for autonomous obstacle avoidance. The VFF method is especially suited to the
accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors) and sensor
fusion, and allows the mobile robot to travel quickly without stopping for obstacles.
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1. Introduction

Conventional tele-operated vehicles or mobile robots rely on visual contact with the operator, either
directly or through video transmissions, as shown in Fig. 1a. Guiding such a vehicle is a formidable
task, often complicated by the limited view from the TV camera. Under such conditions, a human tele-
operator must exercise extreme care, especially in obstacle-cluttered environments. Consequently, the
actual traveling speed of the vehicle might be very slow. When dust, smoke, or steam inhibit vision-
based guidance, conventional tele-operated activity is ruled out altogether.

To overcome this problem, we have developed a system that combines autonomous obstacle
avoidance with tele-operation into what we call a tele-autonomous system. In this system, the tele-
operator can guide the mobile robot even without any visual contact: The mobile robot follows the
general direction prescribed by the operator; however, when the robot encounters an obstacle, it
autonomously avoids collision with that obstacle, trying to match the operator's prescribed direction as
close as possible.

As shown in Fig. 1b, the steering command to the mobile robot is based on the vectorial sum of two
vectors: (1) the operator's reference command Ft, and (2) the obstacle avoidance feedback Fr generated
by the autonomous obstacle avoidance algorithm. The steering of the robot is aligned with the direction
of the resultant vector Fr + Ft and yields continuous and smooth motion. In the absence of obstacles, Fr
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Figure 1: (a) Block diagram of conventional tele-operation. (b) Block diagram of the tele-
autonomous system.
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= 0, and the robot follows the operator's directions. If the robot approaches an obstacle, Fr (usually
pointing away from the object) gradually increases in magnitude and thus causes a progressive
avoidance maneuver. This gradual shift in control is completely transparent.

The tele-autonomous system has a shared control architecture. In shared control systems, a
complex task is divided between the human operator and the machine. In our system, the global control
task of guiding the robot to a target is performed by the operator in the external loop, as shown in Fig.
1b. The local control task of guiding the mobile robot around unexpected obstacles is performed in the
internal loop by the robot's onboard computer. The control tasks are not switched in a bang-bang
control fashion. Rather, these tasks are smoothly integrated, and the level of control shifts gradually
from the operator to the machine, and vice versa.

As seen in Fig. 1b, the internal loop is of a sampled-data type and operates at a constant sampling
frequency f = 1/T. Compared to conventional tele-operation, the internal loop causes only a minor
delay in the entire operation of our system if the sampling period is small. On the other hand, the
performance of the system would be degraded if T was large. Using a version of Shannon's sampling
theorem, we may define the boundary condition for tele-autonomous operation as follows:

Tele-autonomous operation can be implemented when the sampling frequency of the autonomous
loop is greater than 1/Td, where Td is the sum of the operator's delay (due to decision making and
response time) and the communication delay (e.g., in space missions).

The minimum sampling period T is dictated by the computation cycle of the internal loop.
Therefore, a fast collision avoidance algorithm is a necessary condition for successful tele-autonomous
operation. Our experience shows that in practice, the relationship T < 5Td should be satisfied in order
to take full advantage of the integrated autonomous feature. In our system, T = 26 ms, which is at least
one order of magnitude smaller than the typical response time of an operator.

Information about the robot's environment is derived from its onboard sensors and is shown on the
operator's screen, which closes the external control loop. The visual information enables the operator
to steer the robot out of difficult trap situations and to the designated target. In our system, ultrasonic
sensors are used, although the shared control architecture would work with vision or other sensors as
well (provided the constraint on the sampling period T is met).

A comparable approach to tele-autonomous operation has been introduced by Boissiere and
Harrigan [1]. This approach, named telerobotics, is designed for remotely operated manipulators and
was tested on a PUMA robot. The telerobotics concept also couples human commands with computer
reasoning in a shared control architecture. The operator commands are communicated to a map and a
sensor-based constraint analyzer. Based on knowledge of the environment and the manipulator
properties, the analyzer examines the consequences of the operator commands and determines
appropriate perturbations, which are communicated to the robot controller.

In the implementation of the telerobotics system, the position of objects in the environment was
established by a vision system before the robot commenced its motion. Although real-time sensing of
obstacles was not included, some sampling time problems were reported: "New robot position updates
are not always available during the 28 ms cycle time of the robot controller." This again shows the
importance of a short sampling period in the internal loop of this type of system.

Tele-autonomous operation can compensate for a variety of adverse operating conditions that
would not allow conventional tele-operation. Examples of such conditions are:
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a. Limited visual contact with the remotely operated vehicle.

b. Emergency situations requiring guidance of vehicles or mobile robots in cluttered environments. In
such situations, a human operator may have to perform under considerable psychological stress
while speed may be critical.

c. Sensor-motorically impaired operators e. g., users of electric wheelchairs with additional handicaps.

d. Poor communication conditions such as electromagnetic interferences that temporarily disturb
transmissions (e.g., radio-frequency interferences) and time delays (e.g., space missions). Under
such conditions, the external control loop may be temporarily disabled, while the internal control
loop remains intact and protects the robot from collisions.

Tele-autonomous operation is also advantageous for:

a. The simultaneous operation of multiple mobile robots by one operator (provided the robots pursue
similar tasks).

b. Tele-operation of multi-link robotic arms equipped with range sensors. The enhanced autonomy
and self-protection mechanism provided by tele-autonomous operation makes this approach ideally
suited to remotely controlled arms operating under poor visual conditions or with significant time
delays [1], [10], [11], [24].

A central element in tele-autonomous operation is the autonomous obstacle avoidance
algorithm. We have developed an autonomous obstacle avoidance method for fast mobile robots,
called the Virtual Force Field (VFF) method [6]. The VFF method is especially suited to the
accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors), as well as
sensor fusion, and enables continuous motion of the robot without stopping for obstacles.
Because of its central role in tele-autonomous operation, the VFF method will be reviewed in
Section 3; Section 2 presents a brief review of related methods.

2. Review of Obstacle Avoidance Methods

Tele-autonomous operation requires the integration of real-time obstacle avoidance algorithms
with tele-operation. In this section, some of the more popular approaches are reviewed and
discussed in view of their applicability to tele-autonomous operation.

2.1 Edge Detection Methods

In a common method for obstacle avoidance the algorithm tries to determine the position of the two
farthest vertical edges of the obstacle and consequently attempts to steer the robot around either one of
them. The line connecting the two edges is considered to represent one of the boundaries of the
obstacle. This method was used in our own previous research [3], [5], as well as in several other
investigations, [12], [18], [26]. A disadvantage with edge-detection methods is that the robot is
required to stop in front of an obstacle to allow for more accurate measurements.

In tele-autonomous operation the robot can not stop to scan its environment for obstacles since this
would slow down the operation and violate the necessary condition T < Td. Also, periodic, machine-
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generated stops do not conform to the required gradual, transparent shared control architecture. Thus,
the described edge-detection methods are unsuitable for tele-autonomous systems.

2.2 The Certainty Grid for Obstacle Representation

A method for probabilistic representation of obstacles in a grid-type world model has been
developed at Carnegie-Mellon University (CMU) [14], [19], [20]. The resulting world model, called
certainty grid, is especially suited to the unified representation of data from different sensors such as
ultrasonic, vision, and proximity sensors [21], as well as the accommodation of inaccurate sensor data,
which includes the range measurements from ultrasonic sensors.

With the certainty grid world model, the robot's work area is represented by a two-dimensional
array of square elements, denoted as cells. Each cell contains a certainty value (CV) that indicates the
measure of confidence that an obstacle exists within the cell area. With the CMU method, CVs are
updated by a probabilistic function Cx. This function is empirically formulated to take into account the
characteristics of a given type of sensor.

Ultrasonic sensors, for example, have a conical field of view. A typical ultrasonic sensor [22] returns
a radial measure of distance to the nearest object within the cone, yet does not specify the angular
location of the object. (Fig. 2 shows the area A in which an object must be located to result in a
distance measurement d). It can be shown that if an object is detected by an ultrasonic sensor, it is more
likely that this object is closer to the acoustic axis of the sensor than to the periphery of the conical field
of view [5]. For this reason, the probabilistic function Cx increases CVs in cells close to the acoustic
axis more than in cells at the periphery.

In CMU's implementation of this method [21], the mobile
robot remains stationary while taking a panoramic scan with
its 24 ultrasonic sensors. After scanning, the certainty grid is
updated with the probabilistic function Cx, which is applied
for each one of the 24 range readings. The robot then moves
to a new location, stops, and the procedure is repeated. After
traversing a room in this manner, the resulting certainty grid
represents a fairly accurate map of the room. A global path-
planning method is then employed for off-line calculations of
subsequent robot paths.

This method is unsuitable for tele-autonomous operation,
since it requires the robot to stop for scanning, which
violates the requirement for gradual, transparent shared
control.

2.3 Potential Field Methods

The idea of obstacles exerting virtual repelling forces
toward a robot, while the target generates a virtual
attractive force, has been suggested by Khatib [15].
Krogh [16] uses a similar concept that takes into
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Figure 2: A two-dimensional projection of the
conical field of view of an ultrasonic sensor.
A range reading d indicates the existence of
an object somewhere within the shaded
region A.
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consideration the robot's velocity in the vicinity of obstacles. Thorpe [25] applies this potential
fields method to off-line path planning, and Krogh and Thorpe [17] later suggest a combined
method for global and local path planning that uses Krogh’s generalized potential field approach.

Common to these methods is the assumption of a known and prescribed world model in which
simple, predefined geometric shapes represent simulated obstacles. A robot path is generated off-line
through the following steps:

a. Each obstacle generates repulsive forces (usually the normals to well-defined obstacle boundaries),
while the goal generates an attractive force.

b. The resultant force vector R is calculated for a given robot position. R is the vectorial sum of all
repulsive and attractive forces.

c. With R as the accelerating force acting on the robot, the robot's new position for a given time
interval is calculated, and the algorithm returns to step a.

While each of the potential field methods described above features valuable refinements, none of
them has been implemented on a mobile robot that uses real sensory data or in simulations that assume
unknown environments. Only Brooks [8], [9] uses a force field method in an experimental mobile
robot equipped with ultrasonic sensors.  Brooks’ implementation treats each ultrasonic range reading
as a repulsive force vector. If the magnitude of the sum of the repulsive forces exceeds a certain
threshold, the robot stops, turns into the direction of the resultant force vector, and moves on. This
method also requires the robot to stop and thus is not suited for tele-autonomous operation.

3. The VFF Method for Real-time Obstacle Avoidance

The tele-autonomous operation of mobile robots is based on our virtual force field (VFF) method
for real-time obstacle avoidance [6]. The VFF method allows the controlled vehicle to travel smoothly
among densely cluttered and unexpected obstacles. Since a VFF-controlled vehicle does not stop in
front of obstacles, this method is suitable for tele-autonomous operation. In fact, the vehicle slows
down only when approaching an obstacle head-on or for dynamic reasons (e.g., if an obstacle forces
the vehicle into a sharp turn).

The VFF method combines elements of previous methods (described in Section 2), as well as a
number of novel ideas and fast algorithms. This section discusses and summarizes the features peculiar
to the VFF method.

3.1 The Histogram Grid for Obstacle Representation

The VFF method uses histogramic in-motion mapping (HIMM), a new method for real-time map
building with a mobile robot in motion. HIMM represents data in a two-dimensional array (called a
histogram grid) that is updated through rapid, continuous sampling of the onboard range sensors
during motion [7]. Rapid, in-motion-sampling results in a probabilistic map that is well-suited to
modeling inaccurate and noisy range data (such as that produced by ultrasonic sensors) and requires
minimal computational overhead.
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The histogram grid is derived from the certainty grid concept described in Section 2.2. Like the
certainty grid, each cell in the histogram grid holds a certainty value (CV) that represents the
confidence in the existence of an obstacle at that location. The histogram grid differs from the certainty
grid in the way it is built and updated. With CMU’s method, the certainty grid is updated by projecting
a probability profile onto each of those cells that are affected by a range reading. This procedure is
computationally intensive and would impose a heavy time-penalty if real-time execution was attempted
by an onboard computer.

Our method, on the other hand, creates a probability distribution with little computational overhead.
This effect is achieved by incrementing only one cell in the histogram grid for each range reading.  For
ultrasonic sensors, this cell corresponds to the measured distance d (see Fig. 3a) and lies on the
acoustic axis of the sensor. While this approach may seem to be an oversimplification, a probabilistic
distribution is actually obtained by continuously and rapidly sampling each sensor while the vehicle is
moving. Thus, the same cell and its neighboring cells are repeatedly incremented, as shown in Fig. 3b.
This results in a histogramic probability distribution in which high CVs are obtained in cells close to the
actual location of the obstacle. Our experiments with both methods show [23] that actual rapid
sampling from the moving robot (as is the case with HIMM) is more accurate than methods using an
assumed probability function.

Another important feature of HIMM is the cleaning function. This function works as follows:
Whenever a certain ultrasonic sensor provides a range measurement d, the algorithm assumes that the
sector between S and A (see Fig. 3a) is empty and decrements CVs of cells in this sector. This
approach was first used in CMU’s certainty grid method. However, CMU’s method computes and
projects a negative probability function for all cells in the sector, while we decrement only those cells
that are located on the line connecting center cell Cc and origin cell Co (i.e., the acoustic axis, see Fig.
3a).
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Figure 3: (a) Only one cell is incremented for each range reading. With
ultrasonic sensors, this is the cell that lies on the acoustic axis and
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The cleaning function provides two important benefits:

a. Most mobile robots use dead reckoning as the basic means of determining the robot's current
position. This method rapidly accumulates position errors. Onboard sensors, however, measure the
location of objects relative to the momentary position of the robot; if this position is inaccurate, the
position of the object in the histogram grid will also be inaccurate. As the robot traverses a certain
area again and again, it will repeatedly encounter the same object. However, due to the
accumulating position error of the robot, the location of the object in the histogram grid will shift. A
typical mobile robot may accumulate a position error of several meters within just a few hundred
meters of accumulated travel [2], [4]. Thus, if the robot passes by an object repeatedly, the object
may be "stretched" in the histogram grid over several meters. Consequently, passages may seem
blocked even when they are actually wide enough to permit the robot to pass through; therefore, the
tele-autonomous system might fail to operate properly.

The cleaning function remedies this problem by cleaning older images of an object from the
histogram grid. Thus, objects in the histogram grid are always shown “correctly” relative to the
robot’s assumed new position, and the robot will correctly perform the avoidance maneuver.

b. The cleaning function allows the HIMM algorithm to distinguish between stationary and moving
objects. While HIMM does not explicitly identify a moving object as such, the changing location of
the object is temporarily noted in the histogram grid, and the robot can avoid the obstacle. As the
object moves beyond the robot's “field of view,’ subsequent range readings detect the empty space
and decrement the temporarily high CVs accordingly. The resulting histogram grid usually shows
only a faint trace of the path of the object. Subsequent robot travel through the path of the object
erases the trail completely.

The important benefit of this feature is safe operation in a dynamic environment, e. g., the successful
avoidance of slow moving objects1. The changing location of the moving object is temporarily noted in
the histogram grid (high CVs) and the robot can avoid the object. A few seconds after the object has
moved on, the cleaning function has reduced the CVs representing the object's previous positions, and
the histogram grid shows only a faint trace of the path of the object (low CVs). Thus, the robot can
subsequently travel through the path of the object.

Other advantages of HIMM are (see [7] for a detailed discussion):

a. Mapping and obstacle avoidance tasks are integrated –  The VFF algorithm can immediately use the
map for real-time obstacle avoidance.

b. HIMM builds high CVs with only a few samples - A special growth-rate operator increments CVs
more rapidly when they belong to a cluster of filled cells (indicating the existence of a real object).

                                               

      1Slow in this context means that a sufficient number of range readings "show" the object in a
certain area. This is a function of the sampling frequency of the sensors, the number of sensors, the size
of the moving object, and, of course, the velocity of the object. In our system, a person crossing the
robot’s path at walking speed is successfully avoided, even if the robot travels at its maximum speed
0.78 m/s.
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In contrast, CVs of isolated cells (probably resulting from noise) are incremented at a slower rate.
This feature is important for quick real-time reaction to suddenly appearing obstacles.

3.2 Virtual Force Fields and the Histogram Grid

By applying the potential field idea to the
histogram grid world model, the probabilistic sensor
information can be used efficiently to control the
vehicle. The application of this concept is discussed
below, and Fig. 4 illustrates how this algorithm works.

a. A virtual window moves with the vehicle and
overlays a square region of the histogram grid. We
call this the active window, and cells that are
momentarily covered by the active window are
called active cells. In our current implementation,
the active window covers an area of 33×33 cells in
the histogram grid.

b. Each active cell applies a virtual repulsive force Fi,j

toward the vehicle. The magnitude of this force is
proportional to the CV of the cell, and inversely
proportional to dx, where d is the distance between
the cell and the vehicle, and x is a positive real
number. We will assume x = 2 in the following
discussion.

c. Next, all virtual repulsive force vectors Fi,j from the
active cells are added up to yield the resultant
repulsive force vector Fr.

d. A constant-magnitude virtual attractive force Ft is
applied to the vehicle by the target. The summation of Fr and Ft yields the resulting force vector R.

In order to compute R, the individual repulsive force vectors Fi,j must be computed and
accumulated vectorially for each non-zero cell inside the window (i.e., up to 33×33 = 1089 force
vectors in our current application). The computational heart of the VFF algorithm is therefore a
specially developed algorithm for fast computation and summation of the repulsive force vectors. Note
that steps (a through d) are performed simultaneously and asynchronously with the sensor readings and
updates of the histogram grid.

One particular advantage of the VFF method lies in the immediate influence of sensor data on the
robot's control. In practice, each range reading is inserted into the histogram grid as soon as it becomes
available. Therefore, subsequent calculations of R will take this data-point into account. In other
words, every incremental change in the robot's environment experienced is reflected immediately in the
next control command.  This feature enables the vehicle to quickly respond to suddenly appearing
obstacles, which is imperative when traveling at high speeds.

Figure 4: The Virtual Force Field concept:
Occupied cells exert repulsive forces toward the
mobile robot while the target exerts an attractive
force. The robot is steered in the direction of the
resultant force R.
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4. Tele-autonomous Operation

Tele-autonomous operation can be implemented by modifying the VFF algorithm. This is done by
replacing the constant target-directed force Ft with a virtual force in which the direction and magnitude
are determined by the operator-controlled joystick. In addition, the operator can control the maximum
speed of the vehicle with another input device (e.g., a foot pedal), while the tele-autonomous algorithm
adjusts the actual speed to the environmental conditions (see [6] for a comprehensive discussion on
autonomous speed adjustments).

As the robot moves, range readings are taken and projected onto the histogram grid, while the
algorithm scans the active window as follows: Each active cell exerts a virtual repulsive force Fi,j

toward the robot, “pushing’ the robot away from the cell. The vectorial sum of all individual repulsive
forces (from active cells) Fr is given by

(1)

Each individual repulsive force is defined by

(2)

where

Fcr Force constant (repelling).

d(i, j) Distance between active cell (i, j) and the robot.

Ci, j Certainty value of active cell (i, j).

x0, y0 Robot's present coordinates.

xi, yj Coordinates of active cell (i, j).

Note that:

a. The force constant in Eq. (2) is divided by d2. Therefore, occupied cells exert strong repulsive
forces when they are in the immediate vicinity of the robot, and weak forces when they are further
away.

b. The notation chosen in Eq. (2) does not require any trigonometric expressions. Furthermore, almost
all of Eq. (2) can be calculated off-line and stored in a look-up table of moderate size. This way,
very short computation times are achieved.

The position of the user’s joystick prescribes the magnitude and direction of the command vector,
Ft:

(3)

where Fcjis the joystick force constant and ∆x, ∆y  are joystick deflection in x- and y-direction.

Next, Ft is added vectorially to Fr, producing the resultant force vector R.

)ˆˆ( yyxxFcjt ∆+∆=F
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R =  Ft + Fr (4)

The direction of R, δ = R/|R| (in degrees), is used as the reference for the robot's steering-rate
command Ω:

Ω = Ks[δ - θ]   (5)

where Ks is the proportional constant for steering (in sec-1) and θ is the current direction of travel
(in degrees).

(The actual implementation of Eq. (5) is more complicated and uses an algorithm that calculates the
shortest rotational difference between δ and θ.)

Equation 4 is the core of the shared control architecture of the tele-autonomous system. This
architecture allows for the gradual real-time transfer of control between the fully autonomous and tele-
autonomous modes of operation while the vehicle is in motion.

An indication of the real-time performance of our algorithm is the sampling time T (i.e., the rate at
which speed and steer commands for the low-level controller are issued). In our system T = 26 ms,
using an Intel 80386-based PC-compatible computer running at 20 MHz. The following computations
are performed during T:

a. Read sonar information (from the sensor-control computer).

b. Update the histogram grid.

c. Calculate and add (up to) 33×33=1089 individual force vectors inside the active window (Eqs. 1
and 2).

d. Compute the resultant R and the steering direction (Eqs. 3 and 4).

e. Calculate the speed command.

f. Communicate with the low-level motion controller (send speed and steer commands and receive
position update).

5. Experimental Verification

We have implemented and tested the VFF method on our mobile robot CARMEL (Computer-
Aided Robotics for Maintenance, Emergency, and Life support). CARMEL is based on a commercially
available mobile platform [13] that has a maximum travel speed of Vmax = 0.78 m/s and a maximum
steering rate of V = 120 deg/s; and weighs (in its current configuration) about 125 kg. The platform has
a unique 3-wheel drive (synchro-drive) that permits omnidirectional steering. A Z-80 onboard
computer serves as the vehicle's low-level controller.
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CARMEL is equipped with a ring of 24 ultrasonic sensors [22] and two additional computers: a
PC-compatible single-board computer that controls the sensors, and a 20 MHz, 80386-based AT-
compatible computer that performs the computations for tele-autonomous operation.

In extensive tests, we ran CARMEL through difficult obstacle courses under tele-autonomous
control. The obstacles consist of unmarked, everyday objects such as chairs, partitions, and
bookshelves. In most experiments, the vehicle runs at its maximum speed (0.78 m/sec). This speed is
only reduced when an obstacle is approached head-on or if required by the dynamic damping function
[6]. The robot successfully avoids unexpected obstacles as small as a vertical pole 3/4 inch in diameter.

A typical experimental setup is depicted in Fig. 5, where obstacles were placed randomly between
the starting point S and the target T. In this
experiment, the operator’s view was completely
blocked so that he or she could not see the scene.
Only the starting point S and target location T were
marked on the operator’s screen. Figure 6 shows
the screen after the vehicle had been guided
successfully from S to T through the obstacle
course in Fig. 5. The vehicle's path is shown, along
with the shape of the obstacles the vehicle
encountered during the run. Each blob in Fig. 6
represents one cell in the histogram grid. In our
current implementation, CVs range only from 0 to
3. When CV = 0, no sensor reading was projected
onto the cell during the run (and, consequently, no
blob is shown). When CV = 1 (or CV = 2), one (or
two) readings were projected onto the cell; this is
shown in Fig. 6 as blobs comprising of one (or two)
pixels. When CV = 3, three or more readings were
projected onto the same cell, which is represented
by a 4-pixel blob in Fig. 6.

We would like to emphasize that in this
experiment, the vehicle was guided under tele-
autonomous control by an operator who had no
visual contact with the vehicle. The vehicle ran at a
maximum speed of 0.78 m/sec, but the damping
feature [6] reduced the maximum speed as a
function of the obstacles present; therefore, the
average speed was only 0.5 m/sec.

This experiment also demonstrates the self-protection function of tele-autonomous operation. At
point A (in Fig. 6), the operator was directing the robot straight toward T, which would have caused a
collision. Under tele-autonomous control, however, the robot diverted from the prescribed direction to
avoid the collision. At point B, the shape of the obstacles was sufficiently clear on the operator's screen,
allowing him to steer the robot out of the particular obstacle configuration.

Figure 5: The tele-autonomous concept: An operator
guides the mobile robot without direct visual contact,
while the robot protects itself from collisions with
unexpected obstacles.
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6. Summary

Tele-autonomous operation, a new technique
for tele-operated guidance of mobile robots, has
been introduced. This new technique for the
remote guidance of mobile robots uses a shared
control architecture, in which the robot's on-site
sensing and reflex capacity is combined with
human reasoning, analyzing, and decision making.
Under tele-autonomous control, the environment
conditions and the instantaneous direction of the
vehicle dictate whether the operator or the vehicle
takes the leading role in directing the vehicle to
the target, and to what degree.

Tele-autonomous operation was implemented
and tested successfully on an experimental
system. Our implementation is based on the
following principles:

a. A histogram grid representation of obstacles is
obtained through fast sampling during motion.

b. Based on this grid, a field of virtual repulsive
forces is created. All repulsive force vectors within an active window are added, resulting in the
virtual repulsive force vector Fr.

c. The vectorial summation of  Fr and the virtual force Ft in the direction of the operator's joystick
yields a resultant force R, which points to a direction considered free of obstacles.

d. The robot steering is aligned with the direction of R.

While ultrasonic sensors are currently used in our mobile robot, practically any other range-
finding sensor could be employed instead (or in addition), because the histogram grid
representation of obstacles lends itself easily to the integration of data from similar sensors, as
well as different types of sensors (such as vision, touch, and proximity).

7. References

1. P. T. Boissiere and R. W. Harrigan, “Telerobotic Operation of Conventional Robot Manipulators.”
Proceedings of the IEEE Conference on Robotics and Automation, Philadelphia, April 25, 1988,
pp. 576-583.

2. J. Borenstein, and Y. Koren, “A Mobile Platform For Nursing Robots.” IEEE Transactions
on Industrial Electronics, Vol. 32, No. 2, 1985, pp. 158-165.

3. J. Borenstein and Y. Koren, “Hierarchical Computer System for Autonomous Vehicle.”
Proceedings of the 8th Israeli Convention on CAD/CAM and Robotics, Tel-Aviv, Israel,
December 2-4, 1986.

Figure 6: Operator's screen after successful completion
of a tele-autonomous task. Obstacles correspond to the
setup in Fig. 5.



14

4. J. Borenstein and Y. Koren “Motion Control Analysis of a Mobile Robot.” Transactions of
ASME, Journal of Dynamics, Measurement and Control, Vol. 109, No. 2, 1987, pp. 73-79.

5. J. Borenstein and Y. Koren, “Obstacle Avoidance with Ultrasonic Sensors.” IEEE Journal of
Robotics and Automation. Vol. RA-4, No. 2, 1988, pp. 213-218.

6. J. Borenstein and Y. Koren, “Real-time Obstacle Avoidance for Fast Mobile Robots.” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, 1989, pp. 1179-1187.

7. J. Borenstein and Y. Koren, “Histogramic In-motion Mapping for Mobile Robot Obstacle
Avoidance.” IEEE Journal of Robotics and Automation, Vol. 7, No. 4, 1991, pp. 535-539.

8. R. A. Brooks “A Robust Layered Control System for a Mobile Robot.” IEEE Journal of
Robotics and Automation, Vol. RA-2, No. 1, 1986, pp. 14-23.

9. R. A. Brooks and J. H. Connell, “Asynchronous Distributed Control System for a Mobile
Robot.” Proceedings of the SPIE, Vol. 727, 1987, pp. 77-84.

10. L. Conway, R. Volz, and M. Walker, “New Concepts in Tele-autonomous Systems.” Second
AIAA/NASA/USAF Symposium on Automation, Robotics, and Advanced Computation for the
National Space Program, March 11, 1987.

11. L. Conway, R. Volz, and M. Walker, “Tele-Autonomous Systems: Methods and
Architectures for Intermingling Autonomous and Telerobotic Technology.” Proceedings of
the 1987 IEEE International Conference on Robotics and Automation, March 30, 1987.

12. J. L. Crowley, “Dynamic World Modeling for an Intelligent Mobile Robot.” IEEE Seventh
International Conference on Pattern Recognition, Proceedings, Montreal, Canada, July 30 -
August 2, 1984, pp. 207-210.

13. Cybermation, 1987, “K2A Mobile Platform.” Commercial Offer, 5457 JAE Valley Road,
Roanoke, VA 24014.

14. A. Elfes, “Sonar-based Real-World Mapping and Navigation.” IEEE Journal of Robotics and
Automation, Vol. RA-3, No 3, 1987, pp. 249-265.

15. O. Khatib, “Real-time Obstacle Avoidance for Manipulators and Mobile Robots.”
Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St.
Louis, March 25-28, 1985, pp. 500-505.

16. B. H. Krogh, “A Generalized Potential Field Approach to Obstacle Avoidance Control.”
International Robotics Research Conference, Bethlehem, PA, August 1984.

17. B. H. Krogh and C. E. Thorpe, “Integrated Path Planning and Dynamic Steering Control for
Autonomous Vehicles.” Proceedings of the 1986 IEEE International Conference on Robotics
and Automation, San Francisco, CA, April 7-10, 1986, pp. 1664-1669.

18. R. Kuc and B. Barshan, “Navigating Vehicles through an Unstructured Environment with
Sonar.” Proceedings of the 1989 IEEE International Conference on Robotics and
Automation, Scottsdale, Arizona, May 14-19, 1989, pp. 1422-1426.

19. H. P. Moravec and A. Elfes, “High Resolution Maps from Wide Angle Sonar.” Proceedings
of the IEEE Conference on Robotics and Automation, Washington, D.C., 1985, pp. 116-121.



15

20. H. P. Moravec, “Certainty Grids for Mobile Robots.” Preprint of Carnegie-Mellon
University, The Robotics Institute, Technical Report, 1986.

21. H. P. Moravec, “Sensor Fusion in Certainty Grids for Mobile Robots.” AI Magazine, Summer
1988, pp. 61-74.

22. Polaroid Corporation, “Ultrasonic Ranging System.” Ultrasonic Ranging Marketing, 1 Upland
Road, Norwood, MA 02062.

23. U. Raschke and J. Borenstein, “A Comparison of Grid-type Map-building Techniques by
Index of Performance.” Proceedings of the 1990 IEEE International Conference on Robotics
and Automation, Cincinnati, Ohio, May 13-18, 1990, pp. 1828-1832.

24. T. B. Sheridan, “Human Supervisory Control of Robot Systems,” Proceedings of the 1986
IEEE International Conference on Robotics and Automation, Vol. 2, 1986, pp. 808-812.

25. C. F. Thorpe, “Path Relaxation: Path Planning for a Mobile Robot.” Carnegie-Mellon
University, The Robotics Institute, Mobile Robots Laboratory, Autonomous Mobile Robots,
Annual Report, 1985, pp. 39-42.

26. C. R. Weisbin, G. de Saussure, and D. Kammer, “SELF-CONTROLLED. A Real-time Expert
System for an Autonomous Mobile Robot.” Computers in Mechanical Engineering, September,
1986, pp. 12-19.


