
Part II 
Systems and Methods for 
Mobile Robot Positioning

Tech-Team leaders Chuck Cohen, Frank Koss, Mark Huber, and David Kortenkamp (left to right) fine-tune CARMEL
in preparation of the 1992 Mobile Robot Competition in San Jose, CA. The efforts paid off: despite its age,
CARMEL proved to be the most agile among the contestants, winning first place honors for the University of
Michigan.



CHAPTER 5
ODOMETRY AND OTHER DEAD-RECKONING METHODS

Odometry is the most widely used navigation method for mobile robot positioning. It is well known
that odometry provides good short-term accuracy, is inexpensive, and allows very high sampling
rates. However, the fundamental idea of odometry is the integration of incremental motion
information over time, which leads inevitably to the accumulation of errors. Particularly, the
accumulation of orientation errors will cause large position errors which increase proportionally with
the distance traveled by the robot. Despite these limitations, most researchers agree that odometry
is an important part of a robot navigation system and that navigation tasks will be simplified if
odometric accuracy can be improved. Odometry is used in almost all mobile robots, for various
reasons: 

& Odometry data can be fused with absolute position measurements to provide better and more
reliable position estimation [Cox, 1991; Hollingum, 1991; Byrne et al., 1992; Chenavier and
Crowley, 1992; Evans, 1994]. 

& Odometry can be used in between absolute position updates with landmarks. Given a required
positioning accuracy, increased accuracy in odometry allows for less frequent absolute position
updates. As a result, fewer landmarks are needed for a given travel distance.

& Many mapping and landmark matching algorithms (for example: [Gonzalez et al., 1992;
Chenavier and Crowley, 1992]) assume that the robot can maintain its position well enough to
allow the robot to look for landmarks in a limited area and to match features in that limited area
to achieve short processing time and to improve matching correctness [Cox, 1991]. 

& In some cases, odometry is the only navigation information available; for example: when no
external reference is available, when circumstances preclude the placing or selection of
landmarks in the environment, or when another sensor subsystem fails to provide usable data. 

5.1   Systematic and Non-Systematic Odometry Errors

Odometry is based on simple equations (see Chapt. 1) that are easily implemented and that utilize
data from inexpensive incremental wheel encoders. However, odometry is also based on the
assumption that wheel revolutions can be translated into linear displacement relative to the floor.
This assumption is only of limited validity. One extreme example is wheel slippage: if one wheel was
to slip on, say, an oil spill, then the associated encoder would register wheel revolutions even though
these revolutions would not correspond to a linear displacement of the wheel. 

Along with the extreme case of total slippage, there are several other more subtle reasons for
inaccuracies in the translation of wheel encoder readings into linear motion. All of these error
sources fit into one of two categories: systematic errors and non-systematic errors.

Systematic Errors
& Unequal wheel diameters.
& Average of actual wheel diameters differs from nominal wheel diameter.
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Figure 5.1:  Growing “error ellipses” indicate the growing position
uncertainty with odometry. (Adapted from [Tonouchi et al., 1994].)

& Actual wheelbase differs from nominal wheelbase.
& Misalignment of wheels.
& Finite encoder resolution.
& Finite encoder sampling rate.

Non-Systematic Errors
& Travel over uneven floors.
& Travel over unexpected objects on the floor.
& Wheel-slippage due to:

% slippery floors.
% overacceleration.
% fast turning (skidding).
% external forces (interaction with external bodies).
% internal forces (castor wheels).
% non-point wheel contact with the floor.

The clear distinction between systematic and non-systematic errors is of great importance for the
effective reduction of odometry errors. For example, systematic errors are particularly grave because
they accumulate constantly. On most smooth indoor surfaces systematic errors contribute much
more to odometry errors than non-systematic errors. However, on rough surfaces with significant
irregularities, non-systematic errors are dominant. The problem with non-systematic errors is that
they may appear unexpectedly (for example, when the robot traverses an unexpected object on the
ground), and they can cause large position errors. Typically, when a mobile robot system is installed
with a hybrid odometry/landmark navigation system, the frequency of the landmarks is determined
empirically and is based on the worst-case systematic errors. Such systems are likely to fail when one
or more large non-systematic errors occur.

It is noteworthy that many researchers develop algorithms that estimate the position  uncertainty
of a dead-reckoning robot (e.g., [Tonouchi et al., 1994; Komoriya and Oyama, 1994].) With this
approach each computed robot position is surrounded by a characteristic “error ellipse,” which
indicates a region of uncertainty for the robot's actual position (see Figure 5.1) [Tonouchi et al.,
1994; Adams et al., 1994]. Typically, these ellipses grow with travel distance, until an absolute
position measurement reduces the growing uncertainty and thereby “resets” the size of the error
ellipse. These error estimation techniques must rely on error estimation parameters derived from
observations of the vehicle's dead-reckoning performance. Clearly, these parameters can take into
account only systematic errors, because the magnitude of non-systematic errors is unpredictable.
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5.2   Measurement of Odometry Errors

One important but rarely addressed difficulty in mobile robotics is the quantitative measurement of
odometry errors. Lack of well-defined measuring procedures for the quantification of odometry
errors results in the poor calibration of mobile platforms and incomparable reports on odometric
accuracy in scientific communications. To overcome this problem Borenstein and Feng [1995a;
1995c] developed methods for quantitatively measuring systematic odometry errors and, to a limited
degree, non-systematic odometry errors. These methods rely on a simplified error model, in which
two of the systematic errors are considered to be dominant, namely:

& the error due to unequal wheel diameters, defined as

 E  = D /D  (5.1)d R L

where D  and D  are the actual wheel diameters of the right and left wheel, respectively. R L

& The error due to uncertainty about the effective wheelbase, defined as

E  = b /b (5.2)b actual nominal

where b is the wheelbase of the vehicle.

5.2.1 Measurement of Systematic Odometry Errors

To better understand the motivation for Borenstein and Feng's method (discussed in Sec. 5.2.1.2),
it will be helpful to investigate a related method first. This related method, described in Section
5.2.1.1, is intuitive and widely used (e.g., [Borenstein and Koren, 1987; Cybermotion, 1988;
Komoriya and Oyama, 1994; Russell, 1995], but it is a fundamentally unsuitable benchmark test for
differential-drive mobile robots.

5.2.1.1 The Unidirectional Square-Path Test — A Bad Measure for Odometric Accuracy

Figure 5.2a shows a 4×4 meter unidirectional square path. The robot starts out at a position x ,0

y , � , which is labeled START. The starting area should be located near the corner of two0 0

perpendicular walls. The walls serve as a fixed reference before and after the run: measuring the
distance between three specific points on the robot and the walls allows accurate determination of
the robot's absolute position and orientation. 

To conduct the test, the robot must be programmed to traverse the four legs of the square path.
The path will return the vehicle to the starting area but, because of odometry and controller errors,
not precisely to the starting position. Since this test aims at determining odometry errors and not
controller errors, the vehicle does not need to be programmed to return to its starting position
precisely — returning approximately to the starting area is sufficient. Upon completion of the square
path, the experimenter again measures the absolute position of the vehicle, using the fixed walls as
a reference. These absolute measurements are then compared to the position and orientation of the
vehicle as computed from odometry data. The result is a set of return position errors caused by
odometry and denoted �x, �y, and ��.
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Figure 5.2:  
The unidirectional square path experiment.
a. The nominal path.
b. Either one of the two significant errors E  or E  canb d

cause the same final position error. 

�x = x  - x  abs calc

�y = y  - y  (5.3)abs calc

�� = �  - �  abs calc

where
�x, �y, �� = position and orientation er-

rors due to odometry
x , y , � = absolute position and orienta-abs abs abs

tion of the robot
x , y , � = position and orientation ofcalc calc calc 

the robot as computed from
odo-
metry.

The path shown in Figure 5.2a comprises of
four straight-line segments and four pure rota-
tions about the robot's centerpoint, at the cor-
ners of the square. The robot's end position
shown in Figure 5.2a visualizes the odometry
error.

While analyzing the results of this experi-
ment, the experimenter may draw two different
conclusions: The odometry error is the result of
unequal wheel diameters, E , as shown by thed

slightly curved trajectory in Figure 5.2b (dotted
line). Or, the odometry error is the result of
uncertainty about the wheelbase, E . In theb

example of  Figure 5.2b, E  caused the robot tob

turn 87 degrees instead of the desired 90 de-
grees (dashed trajectory in Figure 5.2b).

As one can see in Figure 5.2b, either one of
these two cases could yield approximately the
same position error. The fact that two different
error mechanisms might result in the same
overall error may lead an experimenter toward
a serious mistake: correcting only one of the
two error sources in software. This mistake is so
serious because it will yield apparently “excellent” results, as shown in the example in Figure 5.3.
In this example, the experimenter began “improving” performance by adjusting the wheelbase b in
the control software. According to the dead-reckoning equations for differential-drive vehicles (see
Eq. (1.5) in Sec. 1.3.1), the experimenter needs only to increase the value of b to make the robot turn
more in each nominal 90-degree turn. In doing so, the experimenter will soon have adjusted b to the
seemingly “ideal” value that will cause the robot to turn 93 degrees, thereby effectively
compensating for the 3-degree orientation error introduced by each slightly curved (but nominally
straight) leg of the square path. 
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Figure 5.3:  The effect of the two dominant systematic
dead-reckoning errors E  and E  . Note how both errorsb d

may cancel each other out when the test is performed in
only one direction.

Figure 5.4:  The effect of the two dominant systematic
odometry errors E  and E  : when the square path isb d

performed in the opposite direction one may find that the
errors add up.

One should note that another popular test
path, the “figure-8” path [Tsumura et al.,
1981; Borenstein and Koren, 1985; Cox,
1991] can be shown to have the same short-
comings as the uni-directional square path.

5.2.1.2 The Bidirectional Square-Path
Experiment

The detailed example of the preceding sec-
tion illustrates that the unidirectional square
path experiment is unsuitable for testing
odometry performance in differential-drive
platforms, because it can easily conceal two
mutually compensating odometry errors. To
overcome this problem, Borenstein and Feng
[1995a; 1995c] introduced the bidirectional
square-path experiment, called University
of Michigan Benchmark (UMBmark).
UMBmark requires that the square path
experiment be performed in both clockwise
and counterclockwise direction. Figure 5.4
shows that the concealed dual error from
the example in Figure 5.3 becomes clearly
visible when the square path is performed
in the opposite direction. This is so because
the two dominant systematic errors, which
may compensate for each other when run
in only one direction, add up to each other
and increase the overall error when run in
the opposite direction.

The result of the bidirectional square-
path experiment might look similar to the
one shown in Figure 5.5, which presents
actual experimental results with an off-the-
shelf TRC LabMate robot [TRC] carrying
an evenly distributed load. In this experi
ment the robot was programmed to follow
a 4×4 meter square path, starting at (0,0).
The stopping positions for five runs each in
clockwise (cw) and counterclockwise
(ccw) directions are shown in Figure 5.5.
Note that Figure 5.5 is an enlarged view of
the target area. The results of Figure 5.5
can be interpreted as follows:
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Figure 5.5:  Typical results from running UMBmark (a square path
run in both cw and ccw directions) with an uncalibrated vehicle.

(5.4)

(5.5a)

(5.5b)

& The stopping positions after cw and ccw runs are clustered in two distinct areas. 

& The distribution within the cw and ccw clusters are the result of non-systematic errors, such as
those mentioned in Section 5.1. However, Figure 5.5 shows that in an uncalibrated vehicle,
traveling over a reasonably smooth concrete floor, the contribution of systematic errors to the
total odometry error can be notably larger than the contribution of non-systematic errors. 

After conducting the UMBmark experiment, one may wish to derive a single numeric value that
expresses the odometric accuracy (with respect to systematic errors) of the tested vehicle. In order
to minimize the effect of non-systematic errors, it has been suggested [Komoriya and Oyama, 1994;
Borenstein and Feng, 1995c] to consider the center of gravity of each cluster as representative for
the systematic odometry errors in the cw and ccw directions. 

The coordinates of the two centers of gravity are computed from the results of Equation (5.3) as

where n = 5 is the number of runs
in each direction.

The absolute offsets of the two cen-
ters of gravity from the origin 
are denoted r  and r  (see Fig.c.g.,cw c.g.,ccw

5.5) and are given by

and

Finally, the larger value among r  and r  is defined as the "measure of odometricc.g., cw c.g., ccw

accuracy for systematic errors":

E  = max(r  ; r ) . (5.6)max,syst c.g.,cw c.g.,ccw

The reason for not using the average of the two centers of gravity r  and r  is that forc.g.,cw c.g.,ccw

practical applications one needs to worry about the largest possible odometry error. One should  also
note that the final orientation error �� is not considered explicitly in the expression for E . Thismax,syst
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is because all systematic orientation errors are implied by the final position errors. In other words,
since the square path has fixed-length sides, systematic orientation errors translate directly into
position errors.

5.2.2 Measurement of Non-Systematic Errors

Some limited information about a vehicle’s susceptibility to non-systematic errors can be derived
from the spread of the return position errors that was shown in Figure 5.5. When running the
UMBmark procedure on smooth floors (e.g., a concrete floor without noticeable bumps or cracks),
an indication of the magnitude of the non-systematic errors can be obtained from computing the
estimated standard deviation ). However, Borenstein and Feng [1994] caution that there is only
limited value to knowing ), since ) reflects only on the interaction between the vehicle and a certain
floor. Furthermore, it can be shown that from comparing ) from two different robots (even if they
traveled on the same floor), one cannot necessarily conclude that the robots with the larger ) showed
higher susceptibility to non-systematic errors. 

In real applications it is imperative that the largest possible disturbance be determined and used
in testing. For example, the estimated standard deviation of the test in Figure 5.5 gives no indication
at all as to what error one should expect if one wheel of the robot inadvertently traversed a large
bump or crack in the floor. For the above reasons it is difficult (perhaps impossible) to design a
generally applicable quantitative test procedure for non-systematic errors. However, Borenstein
[1994] proposed an easily reproducible test that would allow comparing the susceptibility to non-
systematic errors of different vehicles. This test, called the extended UMBmark, uses the same
bidirectional square path as UMBmark but, in addition, introduces artificial bumps. Artificial bumps
are introduced by means of a common, round, electrical household-type cable (such as the ones used
with 15 A six-outlet power strips). Such a cable has a diameter of about 9 to 10 millimeters. Its
rounded shape and plastic coating allow even smaller robots to traverse it without too much physical
impact. In the proposed extended UMBmark test the cable is placed 10 times under one of the
robot’s wheels, during motion. In order to provide better repeatability for this test and to avoid
mutually compensating errors, Borenstein and Feng [1994] suggest that these 10 bumps be
introduced as evenly as possible. The bumps should also be introduced during the first straight
segment of the square path, and always under the wheel that faces the inside of the square. It can
be shown [Borenstein, 1994b] that the most noticeable effect of each bump is a fixed orientation
error in the direction of the wheel that encountered the bump. In the TRC LabMate, for example,
the orientation error resulting from a bump of height  h = 10 mm is roughly �� = 0.44  [Borenstein,o

1994b]. 
 Borenstein and Feng [1994] proceed to discuss which measurable parameter would be the most
useful for expressing the vehicle’s susceptibility to non-systematic errors. Consider, for example,
Path A and Path B in Figure 5.6. If the 10 bumps required by the extended UMBmark test were
concentrated at the beginning of the first straight leg (as shown in exaggeration in Path A), then the
return position error would be very small. Conversely, if the 10 bumps were concentrated toward
the end of the first straight leg (Path B in Figure 5.6), then the return position error would be larger.
Because of this sensitivity of the return position errors to the exact location of the bumps  it is not
a good idea to use the return position error as an indicator for a robot’s susceptibility to non-
systematic errors. Instead, the return orientation error �� should be used. Although it is more
difficult to measure small angles, measurement of �� is a more consistent quantitative indicator for



��
nonsys
avrg 


1

nM
n

i
1

|��nonsys
i,cw 	��

sys
avrg,cw| �

1

nM
n

i
1

|��nonsys
i,ccw 	��

sys
avrg,ccw|

Nominal
square path

Path B: 10 bumps
concentrated at end 
of first straight leg.

\book\deadre21.ds4, .w m f, 7 /19/95

Path A: 10 bumps
concentrated at
beginning of
first straight leg.

��
sys
avrg,cw 


1
nM

n

i
1

��
sys
i,cw

��
sys
avrg,ccw 


1

nM
n

i
1

��
sys
i,ccw

��
1(
��
	1(
��

nonsys
avrg 
0

��
nonsys
avrg 
1(

Chapter 5: Dead-Reckoning 137

(5.7)

Figure 5.6:  The return position of the extended UMBmark
test is sensitive to the exact location where the 10 bumps
were placed. The return orientation is not.

(5.8a)

(5.8b)

comparing the performance of different robots. Thus, one can measure and express the susceptibility
of a vehicle to non-systematic errors in terms of its average absolute orientation error defined as

where n = 5 is the number of experiments in cw or ccw direction, superscripts “sys” and “nonsys”
indicate a result obtained from either the regular UMBmark test (for systematic errors) or from the
extended UMBmark test (for non-systematic errors). Note that Equation (5.7) improves on the
accuracy in identifying non-systematic errors by removing the systematic bias of the vehicle, given
by 

and

Also note that the arguments inside the
Sigmas in Equation (5.7) are absolute values
of the bias-free return orientation errors.
This is because one would want to avoid the
case in which two return orientation errors
of opposite sign cancel each other out. For
example, if in one run and in the
next run , then one should not
conclude that . Using the average
absolute return error as computed in Equa-
tion (5.7) would correctly compute

.  By contrast, in Equation (5.8) the
actual arithmetic average is computed to
identify a fixed bias.

5.3   Reduction of Odometry Errors

The accuracy of odometry in commercial mobile platforms depends to some degree on their
kinematic design and on certain critical dimensions. Here are some of the design-specific
considerations that affect dead-reckoning accuracy:

Vehicles with a small wheelbase are more prone to orientation errors than vehicles with a larger
wheelbase. For example, the differential drive LabMate robot from TRC has a relatively small
wheelbase of 340 millimeters (13.4 in). As a result, Gourley and Trivedi [1994], suggest that
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odometry with the LabMate be limited to about 10 meters (33 ft), before a new “reset” becomes
necessary.

& Vehicles with castor wheels that bear a significant portion of the overall weight are likely to
induce slippage when reversing direction (the “shopping cart effect”). Conversely, if the castor
wheels bear only a small portion of the overall weight, then slippage will not occur when
reversing direction [Borenstein and Koren, 1985].

& It is widely known that, ideally, wheels used for odometry should be “knife-edge” thin and not
compressible. The ideal wheel would be made of aluminum with a thin layer of rubber for better
traction. In practice, this design is not feasible for all but the most lightweight vehicles, because
the odometry wheels are usually also load-bearing drive wheels, which require a somewhat larger
ground contact surface.

& Typically the synchro-drive design (see Sec. 1.3.4) provides better odometric accuracy than
differential-drive vehicles. This is especially true when traveling over floor irregularities: arbitrary
irregularities will affect only one wheel at a time. Thus, since the two other drive wheels stay in
contact with the ground, they provide more traction and force the affected wheel to slip.
Therefore, overall distance traveled will be reflected properly by the amount of travel indicated
by odometry.

Other attempts at improving odometric accuracy are based on more detailed modeling. For
example, Larsson et al. [1994] used circular segments to replace the linear segments in each
sampling period. The benefits of this approach are relatively small. Boyden and Velinsky [1994]
compared (in simulations) conventional odometric techniques, based on kinematics only, to solutions
based on the dynamics of the vehicle. They presented simulation results to show that for both
differentially and conventionally steered wheeled mobile robots, the kinematic model was  accurate
only at slower speeds up to 0.3 m/s when performing a tight turn. This result agrees with
experimental observations, which suggest that errors due to wheel slippage can be reduced to some
degree by limiting the vehicle's speed during turning, and by limiting accelerations.

5.3.1 Reduction of Systematic Odometry Errors

In this section we present specific methods for reducing systematic odometry errors. When applied
individually or in combination, these measures can improve odometric accuracy by orders of
magnitude.

5.3.1.1 Auxiliary Wheels and Basic Encoder Trailer

It is generally possible to improve odometric accuracy by adding a pair of “knife-edge,” non-load-
bearing encoder wheels, as shown conceptually in Figure 5.7. Since these wheels are not used for
transmitting power, they can be made to be very thin and with only a thin layer of rubber as a tire.
Such a design is feasible for differential-drive, tricycle-drive, and Ackerman vehicles. 

Hongo et al. [1987] had built such a set of encoder wheels, to improve the accuracy of a large
differential-drive mobile robot weighing 350 kilograms (770 lb). Hongo et al. report that, after
careful calibration, their vehicle had a position error of less than 200 millimeters (8 in) for a travel
distance of 50 meters (164 ft). The ground surface on which this experiment was carried out was a
“well-paved” road.



trc 2ns f .ds 4 , trc 2ns f .wm f, 11 /29/ 93

Chapter 5: Dead-Reckoning 139

Figure 5.7:  Conceptual drawing of a set of
encoder wheels for a differential drive vehicle.

Figure 5.8:  A simple encoder trailer. The trailer
here was designed and built at the University of
Michigan for use with the Remotec's Andros V
tracked vehicle. (Courtesy of The University of
Michigan.)

5.3.1.2 The Basic Encoder Trailer

An alternative approach is the use of a trailer with two
encoder wheels [Fan et al., 1994; 1995]. Such an
encoder trailer was recently built and tested at the
University of Michigan (see Figure 5.8). This encoder
trailer was designed to be attached to a Remotec
Andros V tracked vehicle [REMOTEC]. As was
explained in Section 1.3, it is virtually impossible to
use odometry with tracked vehicles, because of the
large amount of slippage between the tracks and the
floor during turning. The idea of the encoder trailer is
to perform odometry whenever the ground character-
istics allow one to do so. Then, when the Andros has to move over small obstacles, stairs, or
otherwise uneven ground, the encoder trailer would be raised. The argument for this part-time
deployment of the encoder trailer is that in many applications the robot may travel mostly on
reasonably smooth concrete floors and that it would thus benefit most of the time from the encoder
trailer's odometry.

5.3.1.3 Systematic Calibration

Another approach to improving odometric accuracy
without any additional devices or sensors is based on
the careful calibration of a mobile robot. As was
explained in Section 5.1, systematic errors are inher-
ent properties of each individual robot. They change
very slowly as the result of wear or of different load
distributions. Thus, these errors remain almost con-
stant over extended periods of time [Tsumura et al.,
1981]. One way to reduce such errors is vehicle-
specific calibration. However, calibration is difficult
because even minute deviations in the geometry of the
vehicle or its parts (e.g., a change in wheel diameter
due to a different load distribution) may cause sub-
stantial odometry errors. 

Borenstein and Feng [1995a; 1995b] have devel-
oped a systematic procedure for the measurement and
correction of odometry errors. This method requires
that the UMBmark procedure, described in Section
5.2.1, be run with at least five runs each in cw and
ccw direction. Borenstein and Feng define two new error characteristics that are meaningful only
in the context of the UMBmark test. These characteristics, called Type A and Type B, represent
odometry errors in orientation. A Type A is defined as an orientation error that reduces (or
increases) the total amount of rotation of the robot during the square-path experiment in both cw
and ccw direction. By contrast, Type B is defined as an orientation error that reduces (or increases)
the total amount of rotation of the robot during the square-path experiment in one direction, but
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Figure 5.9:  Type A and Type B errors in the ccw and cw directions. a. Type A
errors are caused only by the wheelbase error E . b. Type B errors are causedb

only by unequal wheel diameters (E ).d

increases (or reduces) the amount of rotation when going in the other direction. Examples for Type
A and Type B errors are shown in Figure 5.9.

 Figure 5.9a shows a case where the robot turned four times for a nominal amount of 90 degrees
per turn. However, because the actual wheelbase of the vehicle was larger than the nominal value,
the vehicle actually turned only 85 degrees in each corner of the square path. In the example of
Figure 5.9 the robot actually turned only �  = 4×85( = 340(, instead of the desired �  = 360(.total nominal

One can thus observe that in both the cw and the ccw experiment the robot ends up turning less than
the desired amount, i.e., 

|� | < |� | and |� | < |� | .total, cw nominal total, ccw nominal

Hence, the orientation error is of Type A. 
In Figure 5.9b the trajectory of a robot with unequal wheel diameters is shown. This error

expresses itself in a curved path that adds to the overall orientation at the end of the run in ccw
direction, but it reduces the overall rotation in the ccw direction, i.e., 

|� | > |� | but |� | < |� | .total, ccw nominal total,cw nominal
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(5.9)

(5.10)

(5.11)

(5.12)

Thus, the orientation error in Figure 5.9b is of Type B. 
In an actual run Type A and Type B errors will of course occur together. The problem is therefore

how to distinguish between Type A and Type B errors and how to compute correction factors for
these errors from the measured final position errors of the robot in the UMBmark test. This question
will be addressed next.

Figure 5.9a shows the contribution of Type A errors. We recall that Type A errors are caused
mostly by E . We also recall that Type A errors cause too much or too little turning at the cornersb

of the square path. The (unknown) amount of erroneous rotation in each nominal 90-degree turn is
denoted as " and measured in [rad]. 

Figure 5.9b shows the contribution of Type B errors. We recall that Type B errors are caused
mostly by the ratio between wheel diameters E . We also recall that Type B errors cause a slightlyd

curved path instead of a straight one during the four straight legs of the square path. Because of the
curved motion, the robot will have gained an incremental orientation error, denoted $, at the end of
each straight leg. 

We omit here the derivation of expressions for " and $, which can be found from simple geometric
relations in Figure 5.9 (see [Borenstein and Feng, 1995a] for a detailed derivation). Here we just
present the results:

solves for " in [E] and

solves for $ in [E].

Using simple geometric relations, the radius of curvature R of the curved path of Figure 5.9b can
be found as

Once the radius R is computed, it is easy to determine the ratio between the two wheel diameters
that caused the robot to travel on a curved, instead of a straight path

Similarly one can compute the wheelbase error E . Since the wheelbase b is directly proportionalb

to the actual amount of rotation, one can use the proportion:
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(5.13)

Figure 5.10:  Position rrors after completion of the bidirectional square-path
experiment (4 x 4 m).
Before calibration: b = 340.00 mm, D /D  = 1.00000.R L

After calibration: b = 336.17, D /D  = 1.00084.R L

(5.14)

(5.15)

so that

where, per definition of Equation (5.2)

Once E  and E  are computed, it is straightforward to use their values as compensation factorsb d

in the controller software [see Borenstein and Feng, 1995a; 1995b]. The result is a 10- to 20-fold
reduction in systematic errors.

Figure 5.10 shows the result of a typical calibration session. D  and D  are the effective wheelR L

diameters, and b is the effective wheelbase.
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This calibration procedure can be performed with nothing more than an ordinary tape measure.
It takes about two hours to run the complete calibration procedure and measure the individual return
errors with a tape measure.

5.3.2 Reducing Non-Systematic Odometry Errors

This section introduces methods for the reduction of non-systematic odometry errors. The methods
discussed in Section 5.3.2.2 may at first confuse the reader because they were implemented on the
somewhat complex experimental platform described in Section 1.3.7. However, the methods of
Section 5.3.2.2 can be applied to many other kinematic configurations, and efforts in that direction
are subject of currently ongoing research at the University of Michigan.

5.3.2.1 Mutual Referencing

Sugiyama [1993] proposed to use two robots that could measure their positions mutually. When one
of the robots moves to another place, the other remains still, observes the motion, and determines
the first robot's new position. In other words, at any time one robot localizes itself with reference to
a fixed object: the standing robot. However, this stop and go approach limits the efficiency of the
robots. 

5.3.2.2 Internal Position Error Correction

A unique way for reducing odometry errors even further is Internal Position Error Correction
(IPEC). With this approach two mobile robots mutually correct their odometry errors. However,
unlike the approach described in Section 5.3.2.1, the IPEC method works while both robots are in
continuous, fast motion [Borenstein, 1994a]. To implement this method, it is required that both
robots can measure their relative distance and bearing continuously and accurately. Coincidentally,
the MDOF vehicle with compliant linkage (described in Sec. 1.3.7) offers exactly these features, and
the IPEC method was therefore implemented and demonstrated on that MDOF vehicle. This
implementation is named Compliant Linkage Autonomous Platform with Position Error Recovery
(CLAPPER).

The CLAPPER's compliant linkage instrumentation was illustrated in Chapter 1, Figure 1.15. This
setup provides real-time feedback on the relative position and orientation of the two trucks. An
absolute encoder at each end measures the rotation of each truck (with respect to the linkage) with
a resolution of 0.3 degrees, while a linear encoder is used to measure the separation distance to
within 5 millimeters (0.2 in). Each truck computes its own dead-reckoned position and heading in
conventional fashion, based on displacement and velocity information derived from its left and right
drive-wheel encoders. By examining the perceived odometry solutions of the two robot platforms
in conjunction with their known relative orientations, the CLAPPER system can detect and
significantly reduce heading errors for both trucks (see video clip in [Borenstein, 1995V].)

The principle of operation is based on the concept of error growth rate presented by Borenstein
[1994a, 1995a], who makes a distinction between “fast-growing” and “slow-growing” odometry
errors. For example, when a differentially steered robot traverses a floor irregularity it will
immediately experience an appreciable orientation error (i.e., a fast-growing error). The associated
lateral displacement error, however, is initially very small (i.e., a slow-growing error), but grows in
an unbounded fashion as a consequence of the orientation error. The internal error correction
algorithm performs relative position measurements with a sufficiently fast update rate (20 ms) to
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Figure 5.11:  After traversing a bump, the resulting
change of orientation of Truck A can be measured relative
to Truck B.

allow each truck to detect fast-growing errors in orientation, while relying on the fact that the lateral
position errors accrued by both platforms during the sampling interval were small. 

Figure 5.11 explains how this method works. After traversing a bump Truck A's orientation will
change (a fact unknown to Truck A's odometry computation). Truck A is therefore expecting to
“see” Truck B along the extension of line L . However, because of the physically incurred rotatione

of Truck A, the absolute encoder on truck A will report that truck B is now actually seen along line
L . The angular difference between L  andm e

L  is the thus measured odometry orientationm

error of Truck A, which can be corrected
immediately. One should note that even if
Truck B encountered a bump at the same
time, the resulting rotation of Truck B would
not affect the orientation error measurement.

The compliant linkage in essence forms a
pseudo-stable heading reference in world
coordinates, its own orientation being dic-
tated solely by the relative translations of its
end points, which in turn are affected only
by the lateral displacements of the two
trucks. Since the lateral displacements are
slow growing, the linkage rotates only a very
small amount between encoder samples. The
fast-growing azimuthal disturbances of the
trucks, on the other hand, are not coupled
through the rotational joints to the linkage,
thus allowing the rotary encoders to detect
and quantify the instantaneous orientation
errors of the trucks, even when both are in
motion. Borenstein [1994a; 1995a] provides
a more complete description of this innova-
tive concept and reports experimental results
indicating improved odometry performance
of up to two orders of magnitude over con-
ventional mobile robots.

It should be noted that the rather complex
kinematic design of the MDOF vehicle is not
necessary to implement the IPEC error
correction method. Rather, the MDOF vehi-
cle happened to be available at the time and
allowed the University of Michigan research-
ers to implement and verify the validity of
the IPEC approach. Currently, efforts are
under way to implement the IPEC method
on a tractor-trailer assembly, called “Smart
Encoder Trailer” (SET), which is shown in
Figure 5.12. The principle of operation is
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Figure 5.12:  The University of Michigan's “Smart Encoder
Trailer” (SET) is currently being instrumented to allow the
implementation of the IPEC error correction method explained in
Section 5.3.2.2. (Courtesy of The University of Michigan.)

Figure 5.13:  Proposed implementation of
the IPEC method on a tractor-trailer
assembly.

illustrated in Figure 5.13. Simulation results, indicating
the feasibility of implementing the IPEC method on a
tractor-trailer assembly, were presented in [Borenstein,
1994b].

5.4   Inertial Navigation

An alternative method for enhancing dead reckoning is
inertial navigation, initially developed for deployment on
aircraft. The technology was quickly adapted for use on
missiles and in outer space, and found its way to mari-
time usage when the nuclear submarines Nautilus and
Skate were suitably equipped in support of their transpo-
lar voyages in 1958 [Dunlap and Shufeldt, 1972]. The
principle of operation involves continuous sensing of minute accelerations in each of the three
directional axes and integrating over time to derive velocity and position. A gyroscopically stabilized
sensor platform is used to maintain consistent orientation of the three accelerometers throughout this
process.

Although fairly simple in concept, the specifics of implementation are rather demanding. This is
mainly caused by error sources that adversely affect the stability of the gyros used to ensure correct
attitude. The resulting high manufacturing and maintenance costs have effectively precluded any
practical application of this technology in the automated guided vehicle industry [Turpin, 1986]. For
example, a high-quality inertial navigation system (INS) such as would be found in a commercial
airliner will have a typical drift of about 1850 meters (1 nautical mile) per hour of operation, and cost
between $50K and $70K [Byrne et al., 1992]. High-end INS packages used in ground applications
have shown performance of better than 0.1 percent of distance traveled, but cost in the neighbor-
hood of $100K to $200K, while lower performance versions (i.e., one percent of distance traveled)
run between $20K to $50K [Dahlin and Krantz, 1988].
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Experimental results from the Université Montpellier in France [Vaganay et al., 1993a; 1993b],
from the University of Oxford in the U.K. [Barshan and Durrant-Whyte, 1993; 1995], and from the
University of Michigan indicate that a purely inertial navigation approach is not realistically
advantageous (i.e., too expensive) for mobile robot applications. As a consequence, the use of INS
hardware in robotics applications to date has been generally limited to scenarios that aren’t readily
addressable by more practical alternatives. An example of such a situation is presented by Sammarco
[1990; 1994], who reports preliminary results in the case of an INS used to control an autonomous
vehicle in a mining application. 

Inertial navigation is attractive mainly because it is self-contained and no external motion
information is needed for positioning. One important advantage of inertial navigation is its ability to
provide fast, low-latency dynamic measurements. Furthermore, inertial navigation sensors typically
have noise and error sources that are independent from the external sensors [Parish and Grabbe,
1993]. For example, the noise and error from an inertial navigation system should be quite different
from that of, say, a landmark-based system. Inertial navigation sensors are self-contained, non-
radiating, and non-jammable. Fundamentally, gyros provide angular rate and accelerometers provide
velocity rate information. Dynamic information is provided through direct measurements. However,
the main disadvantage is that the angular rate data and the linear velocity rate data must be
integrated once and twice (respectively), to provide orientation and linear position, respectively.
Thus, even very small errors in the rate information can cause an unbounded growth in the error of
integrated measurements. As we remarked in Section 2.2, the price of very accurate laser gyros and
optical fiber gyros have come down significantly. With price tags of $1,000 to $5,000, these devices
have now become more suitable for many mobile robot applications.

5.4.1 Accelerometers

The suitability of accelerometers for mobile robot positioning was evaluated at the University of
Michigan. In this informal study it was found that there is a very poor signal-to-noise ratio at lower
accelerations (i.e., during low-speed turns). Accelerometers also suffer from extensive drift, and they
are sensitive to uneven grounds, because any disturbance from a perfectly horizontal position will
cause the sensor to detect the gravitational acceleration g. One low-cost inertial navigation system
aimed at overcoming the latter problem included a tilt sensor [Barshan and Durrant-Whyte, 1993;
1995]. The tilt information provided by the tilt sensor was supplied to the accelerometer to cancel
the gravity component projecting on each axis of the accelerometer. Nonetheless, the results
obtained from the tilt-compensated system indicate a position drift rate of 1 to 8 cm/s (0.4 to 3.1
in/s), depending on the frequency of acceleration changes. This is an unacceptable error rate for
most mobile robot applications.

5.4.2 Gyros

Gyros have long been used in robots to augment the sometimes erroneous dead-reckoning
information of mobile robots. As we explained in Chapter 2, mechanical gyros are either inhibitively
expensive for mobile robot applications, or they have too much drift. Recent work by Barshan and
Durrant-Whyte [1993; 1994; 1995] aimed at developing an INS based on solid-state gyros, and a
fiber-optic gyro was tested by Komoriya and Oyama [1994].
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Figure 5.14:  Angular rate (top) and orientation (bottom) for zero-input case (i.e., gyro
remains stationary) of the START gyro (left) and the Gyrostar (right) when the bias
error is negative. The erroneous observations (due mostly to drift) are shown as the
thin line, while the EKF output, which compensates for the error, is shown as the
heavy line. (Adapted from [Barshan and Durrant-Whyte, 1995] © IEEE 1995.)

5.4.2.1 Barshan and Durrant-Whyte [1993; 1994; 1995]

Barshan and Durrant-Whyte developed a sophisticated INS using two solid-state gyros, a solid-state
triaxial accelerometer, and a two-axis tilt sensor. The cost of the complete system was £5,000
(roughly $8,000). Two different gyros were evaluated in this work. One was the ENV-O5S Gyrostar
from [MURATA], and the other was the Solid State Angular Rate Transducer (START) gyroscope
manufactured by [GEC]. Barshan and Durrant-Whyte evaluated the performance of these two gyros
and found that they suffered relatively large drift, on the order of 5 to 15(/min. The Oxford
researchers then developed a sophisticated error model for the gyros, which was subsequently used
in an Extended Kalman Filter (EKF — see Appendix A). Figure 5.14 shows the results of the
experiment for the START gyro (left-hand side) and the Gyrostar (right-hand side). The thin plotted
lines represent the raw output from the gyros, while the thick plotted lines show the output after
conditioning the raw data in the EKF.

The two upper plots in Figure 5.14 show the measurement noise of the two gyros while they were
stationary (i.e., the rotational rate input was zero, and the gyros should ideally show ).
Barshan and Durrant-Whyte determined that the standard deviation, here used as a measure for the
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Figure 5.15:  Computer simulation of a mobile robot run.. (Adapted from [Komoriya and Oyama, 1994].)
a. Only odometry, without gyro information. b. Odometry and gyro information fused.

amount of noise, was 0.16(/s for the START gyro and 0.24(/s for the Gyrostar. The drift in the rate
output, 10 minutes after switching on, is rated at 1.35(/s for the Gyrostar (drift-rate data for the
START was not given). 

The more interesting result from the experiment in Figure 5.14 is the drift in the angular output,
shown in the lower two plots. We recall that in most mobile robot applications one is interested in

the heading of the robot, not the rate of change in the heading. The measured rate  must thus be
integrated to obtain 1. After integration, any small constant bias in the rate measurement turns into
a constant-slope, unbounded error, as shown clearly in the lower two plots of Figure 5.14. At the end
of the five-minute experiment, the START had accumulated a heading error of -70.8 degrees while
that of the Gyrostar was -59 degrees (see thin lines in Figure 5.14). However, with the EKF, the
accumulated errors were much smaller: 12 degrees was the maximum heading error for the START
gyro, while that of the Gyrostar was -3.8 degrees. 

Overall, the results from applying the EKF show a five- to six-fold reduction in the angular
measurement after a five-minute test period. However, even with the EKF, a drift rate of 1 to 3 /mino

can still be expected.

5.4.2.2 Komoriya and Oyama [1994]

Komoriya and Oyama [1994] conducted a study of a system that uses an optical fiber gyroscope, in
conjunction with odometry information, to improve the overall accuracy of position estimation. This
fusion of information from two different sensor systems is realized through a Kalman filter (see
Appendix A).

Figure 5.15 shows a computer simulation of a path-following study without (Figure 5.15a) and
with (Figure 5.15b) the fusion of gyro information. The ellipses show the reliability of position
estimates (the probability that the robot stays within the ellipses at each estimated position is 90
percent in this simulation). 
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Figure 5.16:  Melboy, the mobile robot used by
Komoriya and Oyama for fusing odometry and gyro
data. (Courtesy of [Komoriya and Oyama, 1994].)

In order to test the effectiveness of their method,
Komoriya and Oyama also conducted actual
experiments with Melboy, the mobile robot shown
in Figure 5.16. In one set of experiments Melboy
was instructed to follow the path shown in
Figure 5.17a. Melboy's maximum speed was
0.14 m/s (0.5 ft/s) and that speed was further
reduced at the corners of the path in Figure 5.17a.
The final position errors without and with gyro
information are compared and shown in
Figure 5.17b for 20 runs. Figure 5.17b shows that
the deviation of the position estimation errors from
the mean value is smaller in the case where the
gyro data was used (note that a large average
deviation from the mean value indicates larger
non-systematic errors, as explained in Sec. 5.1).
Komoriya and Oyama explain that the noticeable
deviation of the mean values from the origin in
both cases could be reduced by careful calibration
of the systematic errors (see Sec. 5.3) of the mobile
robot. 

We should note that from the description of this
experiment in [Komoriya and Oyama, 1994] it is
not immediately evident how the “position estima-
tion error” (i.e., the circles) in Figure 5.17b was
found. In our opinion, these points should have
been measured by marking the return position of
the robot on the floor (or by any equivalent
method that records the absolute position of the
robot and compares it with the internally computed position estimation). The results of the plot in
Figure 5.17b, however, appear to be too accurate for the absolute position error of the robot. In our
experience an error on the order of several centimeters, not millimeters, should be expected after
completing the path of Figure 5.17a (see, for example, [Borenstein and Koren, 1987; Borenstein and
Feng, 1995a; Russel, 1995].) Therefore, we interpret the data in Figure 5.17b as showing a position
error that was computed by the onboard computer, but not measured absolutely.

5.5   Summary

& Odometry is a central part of almost all mobile robot navigation systems.

& Improvements in odometry techniques will not change their incremental nature, i.e., even for
improved odometry, periodic absolute position updates are necessary. 
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Figure 5.17:  Experimental results from Melboy using odometry with and without a fiber-optic gyro.
a. Actual trajectory of the robot for a triangular path. 
b. Position estimation errors of the robot after completing the path of a. Black circles show the errors

without gyro; white circles show the errors with the gyro. 
(Adapted from [Komoriya and Oyama, 1994].)

& More accurate odometry will reduce the requirements on absolute position updates and will
facilitate the solution of landmark and map-based positioning. 

& Inertial navigation systems alone are generally inadequate for periods of time that exceed a few
minutes. However, inertial navigation can provide accurate short-term information, for example
orientation changes during a robot maneuver. Software compensation, usually by means of a
Kalman filter, can significantly improve heading measurement accuracy. 


