Part Il
Systems and Methods for
Mobile Robot Positioning

Tech-Team leaders Chuck Cohen, Frank Koss, Mark Huber, and David Kortenkamp (left to right) fine-tune CARMEL
in preparation of the 1992 Mobile Robot Competition in San Jose, CA. The efforts paid off: despite its age,

CARMEL proved to be the most agile among the contestants, winning first place honors for the University of
Michigan.



CHAPTER 5
ODOMETRY AND OTHER DEAD-RECKONING METHODS

Odometry is the most widely used navigation method for mobile robot positioning. It is well known
that odometry provides good short-teaccuracy, is inexpensive, and allows very high sampling
rates. However, the fundamental idea of odometry is the integration of incremental motion
information over time, which leads inevitably to the accumulationrafre Particularly, the
accumulation of orientatiormers will cause large positionreors which increase proportionally with

the distance traveled by the robot. Despite tligstations, most researchers agree tduametry

is an important part of a robot navigation system and that navigation téiske simplified if
odometric accuracy can bepnoved. Odometry is used in almost all mobile robots, for various
reasons:

+ Odometry data can be fused with absolute position measuremgmtide ketter and more
reliable position estimation [Cox, 1991; lmgum, 1991; Byrne et al., 1992; Chenavier and
Crowley, 1992; Evans, 1994].

+ Odometry can be used in between absolute position updates with landmarks. Given a required
positioning accuracy, increased accuracy in odometry allows for less frequent absolute position
updates. As a result, fewer landmarks are neéatealgiven travel distance.

+ Many mapping and landmark matching algorith(far example: [Gonzalez et al., 1992;
Chenavier and Crowley, 1992]) assume that the robot can maintain its position well enough to
allow the robot to look for landmarks iniaited area and to aich features in thdimited area
to achieve short processing time and to improagching orrectnes$Cox, 1991].

+ In some cases, odometry is the only navigation information available; for example: when no
external reference is available, when circumstances preclude the placing or selection of
landmarks in the environment, or when another sensor subsystem fails to provide atsable d

5.1 Systematic and Non-Systematic Odometry Errors

Odometry is based on simple equations (see Chapt. 1) that are easily implemented and that utilize
data from inexpensive incremental wheel encoders. However, odometry is also based on the
assumption that wheel revolutions can be translated into linear displacement relativecrthe fl
This assumption is only of limited validity. One extreme example is wheel slippage: if one wheel was
to slip on, say, an oil 8 then the assoated encoder would register wheel revolutions eliendh
these revolutions would not correspond to a linear aligghent of the wheel.

Along with the extreme case of total slippage, there are several other more subtle reasons for
inaccuracies in the translation of wheel encoder readings into linear motion. All of these error
sources fit into one of two categorisgstematic errorandnon-systentic errors.

Systematic Errors
» Unequal wheel diameters.
» Average of actual wheel diameters difftn@m nominal wheel diagter.
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« Actual wheelbase differs from nominal wheelbase.
- Misalignment of wheels.

« Finite encoder resolution.

» Finite encoder sampling rate.

Non-Systematic Errors
» Travel over uneven floors.
+ Travel over unexpected objects on thoofl
» Wheel-slippage due to:
= Slippery floors.
o overacceleration.
= fast turning (skidding).
o external forces (interaction with exterraldies).
= internal forces (castor wheels).
= non-point wheel camact with the fbor.

The clear distinction between systematic and non-systematic errorséabingrortance for the
effective reduction of odometryrers. For example, systematic errors are particularly gragause
they accumute constantly. On most smootidoor surdces systematiamrs contribute much
more to odometry errors than non-systematic errors. However, on rougbesuiith significant
irregularities, non-systematic errors are dominant. The problem with non-systematic errors is that
they may appear unexpectedgr example, when the robot traverses an uaetgd object on the
ground), and they can cause large positimars. Typically, when a mobile robot system is installed
with a hybridodometry/landmark navigation system, the frequency of the landman®snined
empirically and is based on the worst-case systematic errors. Such systems are likely to fail when one
or more large non-systematic errors occur.

It is noteworthy that many researchers develop algorithms that estimate the position uncertainty
of a dead-reckoning robot (e.g., [Tonouchi et al., 1994; Komoriya and Oyama, 1994].) With this
approach each computedbot position is surrounded by a cheteristic “@ror dlipse,” which
indicates a region of uncertainty for the robatsual position (see Figuel) [Tonouchi et al.,

1994; Adams et al., 1994]. Typically, thedipees grow with travel distance, until an absolute
position measurement reduces the growing uncertainty and thereby “resets” the size of the error
ellipse. These error estimatidechniques must rely on error estimation patars derivedrom
observations of the vehicle's dead-reckoning performance. Clearly, theseteaisazan take into
account only systematic errorgdause the magnitude rdn-systematic errors is unpretible.

Uncertainty
Estimated trajectory error €lipses

» of robot
71‘ position \ /\
- O \/ U ’
Figure 5.1: Growing “error ellipses” indicate the growing position
uncertainty with odometry. (Adapted from [Tonouchi et al., 1994].)
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5.2 Measurement of Odometry Errors

One important but rarely addressed difficulty in mobile robotics igjtiagtitative measurement of
odometry erors.Lack of well-defined measuringrocedures for the quantiition ofodometry

errors results in thpoor calibration of mobile platforms and incomparable reports on odometric
accuracy in scientific communications. To overcome pihidolem Borenstein and Feng [1995a,;
1995c] developed methods for quéaiively measuring systematilometry errors and, tolienited

degree, non-systematic odometry errors. These methods rely on a simplified error model, in which
two of the systematic errors are considered to be dominant, namely:

» the error due to unequal wheel dieters, defined as
E,=DgD, (5.1)

whereDg andD, are theactualwheel diameters of the right and left wheel, respectively.

» The error due to uncertainty about theeefive wheelbase, defined as

Eb = bactua{b nominal (52)
whereb is the wheelbase of the vehicle.

5.2.1 Measurement of Systematic Odometry Errors

To betterunderstand the motivation for Borenstein and Feng's method (discussed in Sec. 5.2.1.2),
it will be hepful to investigite a related mibd first. This redted metod, described in&gtion

5.2.1.1, is intuitive and widely used (e.g., [Borenstein and Koren, 1987; Cybermotion, 1988;
Komoriya and Oyama, 1994; Russell, 1995], but it is a fundamentally unsuitable benchmark test for
differential-drive mobile robots.

5.2.1.1 The Unidiectional Square-Path Test — A Bad Measure for Odometric Accuracy

Figure 5.2a shows a 4x4eter unidirectional square path. Tiodot starts out at a positios
Yo, 8o, which is labeled START. The starting area should loatéd near theocner of two
perpendicular walls. The walls serve as a fixed reference before and after the run: measuring the
distance between three specific points on the robot and the walls attowsite determination of
the robot's absolute position and otation.

To conduct the test, the robot must be programmed to traverse the four legs of the square path.
The path will reirn the vehicle to the starting area bacduse obdometry and controller errors,
not precisely to the starting position. Since this test aimstatminingodometry errors and not
controller errors, the vehicle does not need to be programmed to return to its starting position
precisely — returning approximately to the starting areaff&gnt. Upon completion of the square
path, the experimenter again measures the absolute position of the vehicle, using the fixed walls as
areference. These absolute measurements are then compared to the position and orientation of the
vehicle as computed from odometrgtd. The result is a set dturn position errorscaused by
odometry and denotetk, ey, andef.
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EX = Xabs - X cale Reference Wall
€Y = Vabs~ Ycalc (53) Ob —» Forward \
€b = eabs' 0 calc Start
(XO! y0! 90)
where End Preprogrammed
_ . . . +
€X, €Y, €0 = position and orientation er- (;2+:yx square path, x4 m,

rors due to odometry 0o+<))
Xabs Yans O aps = absolute position and orienta-

tion of the robot
Xealo Yealo O cac=  pOSItion and orientation of

the robot as computed from

odo-

metry. a. A\ /

The path shown in Figure 5.2a comprises of
four straight-line segments and four pure rota- Reference Wall
tions about the robot's centerpoint, at the cof-
ners of the square. The robot's end positi
shown in Figure 5.2a visualizes the odomet

s |
error. End\\'z Preprogrammed

. , . . '\
While analyz_lng the results of this experi | square path, 4x4 m. 1
ment, the experimenter may dravy two different V' 87 wrninstead of 90° twrn :
conclusions: The odometry error is the result of \\ (due to uncertainty about i
unequal wheel diametersy, as shown by the ||z the effective wheelbase). I
slightly curved tragctory in Figure 5.2b (dted . Curved instead of straight path '-

N— —

) " In th le here, thi
uncertainty about the wheelbads, In the ;}Z:::[;’,ﬁ,i ;,’:,, * cause:/
example of Figure 5.2k, caused the robot to % ‘\ A \ ......
turn 87 degrees itsad of the desired 90 de-~ /®° | -

grees (dashed trajectory in Figure 5.2b). T &, |

As one can see in Figure 5.2b, either one of prm—— ———
these two casemould yield approxinately the Figure 5.2: _
same position error. Thadt that two different ZheT”hr!dr']roenﬁ?no;ﬂ e path experiment.
error mechanisms might result in the samg Eitner one of the two significant errors E, or £, can
overall error may lead an experimenter toward cause the same final position error.
a serious mistake: correcting only one of the
two error sources in software. This mistake is so
serious because itilyield apparently “excellent” results, as shown in the example in Figde
In this example, the experimenter began “improving” performance by adjusting the whésdlbase
the control software. According to the dead-reckoning equations for differential-drive vehicles (see
Eq. (1.5) in Sec. 1.3.1), the experimenter needs only to increase the vakeenadike the robot turn
more in each nomin@0-degree turn. In doing so, the experimentérse@on have adjustellto the
seemingly “ideal” value that will cause thebot to turn 93 degrees, thereby eefively
compensating for the 3-degree otaion aror introduced byach slightly arved (but nominally
straight) leg of the square path.

: . -, . I

line). Or, the odometry error is the result of . (due fo unequal wheel diameters). | -
i
|

S ——
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One should note that anoth@pular test Reference Wall
path, the “figure-8” path [Tsumura et al.,
1981; Borenstein and Koren, 1985; Co Start T\_’ Forward . ...... \V/
1991] can be shown to have the saimaris 1 e :
comings as the uni-directional square pat : End ]
L . Curved instead of straight path ]
5.2.1.2 The Bideectional Square-Path . (due to unequal wheel diameters).
Experiment . In the example here, this causes

. a 3 origntation error.

93 turn instead of 90° turn
(due to uncertainty about the |
effective wheelbase). ;

The detailed example of the preceding sec-
tion illustrates that the unidirectional square
path experiment is unsuitable for testing
odometry performance in differential-drive
platforms, lecause it can easily conceal two
mutually compensating odometry errors. To
overcome this problem, Borenstein and Feng

Preprogrammed
square path, 4x4 m.

[1995a;1995c] introduced thbidirectional UUUUURUTRRPIPR PREEEY SRREE <T SN

square-pathexperiment, calledUniversity ' = 4/
H H \designerbbook\deadre30.ds4, deadre31.wmf, 07/19/95

of Mlchlgan Benchmark (UMBmark)' Figure 5.3: The effect of the two dominant systematic

UMBmark requires that the square patead-reckoning errors £, and £, . Note how both errors
experiment be performed in both clockwisenay cancel each other out when the test is performed in
and counterclockwise direoti. Figure 5.4 only one direction.

shows that the concealed duadoe from

the example in Figure 5.3 becomes clearly

visible when the square path is performed /T _
in the opposite dection. This is so écause Preprogrammed S
the two dominant systematic errors, which ~ [squaepath, 4xdm.. / o

may compensatr each other when run { o

Curved instead of straight path
(due to unequal wheel diameters).
In the example here, thizauses
ﬁ\ a 3 orientation error.

in only one directin, add up t@ach other
and increase the overall error when run i
the opposite dection.

The result of the bidirectional square-
path experiment might lookmsilar to the
one shown in Figure 5.5, which presents
actual experimental results with an off-the-
shelf TRCLabMaterobot [TRC] carrying
an evenly distributed load. In this experi
ment the robot was programmed to follow
a 4x4 meter square path, starting®0).
The stopping position®r five runseach in
clockwise (cw) and counterclockwise
(ccw) directions are shown in Figubes.
Note that Figure 5.5 is an enlarged view of

9% turn instead of 90 turn
(due to uncertainty about

the effective wheelbasé. “ﬁ

. Reference Wall Idesigner\book|deadre30.ds4, deadre32.w ¥, 07/19/95
the target area. The results of Figure 5.8gure 5.4: The effect of the two dominant systematic

can be interpreted as follows: odometry errors E, and E,: when the square path is
performed in the opposite direction one may find that the
errors add up.
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» The stopping positions after cw and ccw runs are clustered in two distinct areas.

» The distribution within the cw and ccw clusters are the result of non-systematic errors, such as
those mentioned in Sectidnl. However, Figure 5.5 shows that in an uncaldxl vehicle,
traveling over a reasonably smooth concreterflthe contribution ofystematierrors to the
total odometry error can be notably larger than the contribution of non-systematic errors.

After conducting the UMBmark experiment, one may wish to derive a single numeric value that
expresses the odometeccuracy (with respect to systematiooes) of the tested vehicle. In order
to minimize the effect afion-systematic errors, it has been suggested [Komoriya and Oyama, 1994;
Borenstein and Feng, 1995c] to consider the center of graatgadf cluster as representative for
the systematic odometry errors in the cw and ccections.

The coordinates of the two centers of gravity are computed from the results of Equation (5.3) as

N Y [mm] — ——_ fW cluster
_1 A .
Xc cwiccw _Z EXi cwiccw / O \ ,
G ni; " / Center of gravity
(5.4) 100Xgen ., — | of cwruns
1y Q0 /
yc.g.,cw/ccw_ H.Zq: Gyi,cw/ccw 50+ &>°§ B /
3 X [mm]
] -50 50 100 150 200 250
wheren = 5 is the number of runs 50+
in each direction. Z Center of gravity
The absolute offsets of the two cen- , Of ccwruns
ters of gravity from the origin -1007 :
are denoted. 4 . andr ¢ 4 ccw(see Fig. =
5.5) and are given by -150+ e NS
P N
() \
-200“ Xe. .,CCW (
_ 2 2 9.
r.c.g.,cw_\/(Xc.g.,cw) + (yc.g.,cw) (5.52) C/CW /\\ . ‘/l
_o50L cluster ™
an d 250 \bookldeacked1ds 4, WMF, 07/19/% N /

Figure 5.5: Typical results from running UMBmark (a square path
- 2 2 run in both cw and ccw directions) with an uncalibrated vehicle.
rc.g.,ccw_\/( c.g.,ccw) t (yc.g.,ccw) . (5.5) )

Finally, the larger value amomng, .,andr., .., is defined as thenieasure of odometric
accuracy for systematic errdrs

Emax,syst: max( c.g.,cw; r c.g.,cc)/v- (56)

The reason for not using tlaerageof the two centers of gravity. g ., andr ¢ g .S that for
practical applications one needs to worry aboutdhgestpossible odometry error. One should also
note that the final orientationrer <0 is not considered explicitly in the expressionEQgy sysc This
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is because all systematic orientatioroes are implied by the final position errors. In other words,
since the square path has fixed-length sides, systematic orientatios teansite directly into
position errors.

5.2.2 Measurement of Non-Systematic Errors

Some limited mformation about a vehicle’s suscepitip to non-systematic errors can be derived
from the spread of the return position errors that was shown in Figure 5.5. When running the
UMBmark procedure on smooth floors (e.g., a cetefbor without notteable bumps or cracks),

an indication of the magnitude of then-systematic errors can be obtained from computing the
estimated standard deviation However, Borenstein and Feng [1994] caution that there is only
limited value tdknowingo, sinceo reflects only on the interaction between the vehicle and a certain
floor. Furthermore, it can be shown that from compasifigpm two different robots (even if they
traveled on the same floor), one cannetessarily conclude that the robots with the lasgsnowed

higher susceptibility tmon-systematic errors.

In real applications it is imperative that tlaegest possible disturband® determined and used
in testing. For example, the estimated standard deviation of the test inF:lggrees no indiation
at all as to what error one should egpif one wheel of theobot inadvertently traversed a large
bump or crack in the floor. For the above reasons it is difficult (perhaps impossible) to design a
generally applicable quantitative tgsbcedure for non-systematic errors. However, Borenstein
[1994] proposed an easily reproducible test that would allow comparing the sulsyegatinon-
systematic errors of different vehicles. This test, calledetiended UMBmatkuses the same
bidirectional square path as UMBmark but, in addition, introduces artificial bumps. Artificial bumps
are introduced by means of a common, rourettatalhousehold-type cable (such as the ones used
with 15 A six-outlet power strips). Such a cable has a elianof dout 9 to 10milimeters. Its
rounded shape and plastic coating allow even snalteats to traverse it without too much physical
impact. In theproposed extended UMBmark test the cable asgudl 10 timesinder one of the
robot’'s wheels, during motion. In order to providetter repeataltty for this test and to avoid
mutually compensating errors, Borenstein and Feng [1994] suggest that these 10 bumps be
introduced as evenly as possible. The bunmagilsl also be introduced during the first straight
segment of the square path, and always under the wheeaktleatthe inside of the square. It can
be shown [Borenstein, 1994b] that the mostaeable effect of each bump is a fixed orientation
error in the diection of the wheel that eagntered the bump. In the TR@bMate for example,
the orientation error resulting from a bump of height 10 mm is roughi8 = 0.44 [Borenstein,
1994h].

Borenstein and Feng [1994] peed to discuss which measurable parameter would be the most
useful for expressing the vehicle’s suscdifitfto non-systematic errors. Consider, for example,
Path A and Path B in Figure 5.6. If the 10 bumps required bgxtended UMBmarkest were
concentrated at the beginning of the first straight leg (as shown in exaggeration in Path A), then the
return position error would be very small. Conversely, if the 10 bumps were catedribward
the end of the first straight leg (Path B in Figure 5.6), then the return position error would be larger.
Because of this sensitivity of the weh position errors to the agt location of the bumps it is not
a good idea to use the wen position error as an iraditor for a robot’s suscepliby to non-
systematic errors. Ibsad, the return ori¢ation eror €0 should be used. Although it is more
difficult to measure small angles, measuremerat a more consistent quantitative indicator for
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comparing the performance of different robots. Thus, one can measure and express thellgysceptib
of a vehicle to non-systematic errors in terms chwtsrage absolute orientation errdefined as

Eenonsys — Ei lee_nonsys sys E | enonsys S)’S | (57)

avrg n i,cw avrg, cw i,ccw av rg,ccwi
i=1

wheren = 5 is the number of experiments in cw or ccw dimgtsuperscriptssys and “nonsys
indicate a result obtained from either the regular UMBmark test (feersgsic errors) or from the
extended UMBmark test (for nesysematic errors). Note that Equation (5.7) improves on the
accuracy in identifyingnon-systematic errors by removing the systematic bias of the vehicle, given

by

€0orgon = —Z €0, 5.8 End of

path B - T ’ Forw"dm

and 7‘!'11‘%-1%—1—J - _ RERRRRRNY
End of | ———— :

ath A ]Start 7

P Path A: 10 bumps Path B: 10 bumps 1

gsys - Z 0% (5.8b) 11 concentrated atp concentrated at end |
Oavigoon .eew ' ] of first straight leg.

beginning of .
1| first straight leg. ]
j ]

Also note that the arguments inside the 1 ]
Sigmas in Equation (5.7) are absolute values 1 '

of the bias-free return oriéation erors. 1 Nominal ;
This is because one would want to avoid the square path
case in which two return origation arors ;’ ]
of opposite sign cancelch other out. For I’ A\ ]
example, if in one rure@=1° and in the I ______________________ / 1
next run e6=-1° , then one should not -l T f

nonsys e —

COI’]C|Ude thateavrg 0 US|ng the average bookdeadre2t dsa, wmi, 719095 T " — — J
absolute return error as computed in EQUa&igure 5.6: The return position of the extended UMBmark
tion (5.7) would COfEECt|y compute test s sensitive to the exact location where the 10 bumps
6923?53’3 1By contrast, in Equation (5.8) thewere placed. The return orientation is not.

actual arithmetic average is computed to
identify a fixed bias.

5.3 Reduction of Odometry Errors

The accuracy of odometry in commercial mobile platforms depends to some degree on their
kinematic design and on certain critical dimensions. Here are some of the design-specific
considerations that affect di¢aeckoningaccuracy:

Vehicles with a small wheelbase are more prone totatien erors than vehicles with a larger
wheelbase. For example, the differential didaMaterobot from TRC has a relatively small
wheelbase of 34@ilimeters(13.4 in). As a result, Gourley and Trivedi [1994], suggest that
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odometry with thd.abMatebe limited to &out 10 neters(33 ft), before a new “re$” becomes
necessary.

+ Vehicles with castor wheels that bear a significant portion of the overall weight are likely to
induce slippage when reversing direction (thiecfsping cart etct”). Conversely, if the castor
wheels bear only a small portion of the overall weight, then slippabeot occur when
reversing directiofBorenstein and Koren, 1985].

+ It is widely known that, ideally, wheels used for odometry should be “knife-edge” thin and not
compressible. The ideal wheel would be made of aluminum with a thin layer of rubbettéor b
traction. In pactice, this design is not feasilbé all but the most lightweight vehiclesetause
the odometry wheels are usually alsadlidmearing drive wheels, which require a somewhat larger
ground cotact sirface.

+ Typically the synchro-drive design (see Sec. 1.3.4) providéerodometricaccuracy than
differential-drive vehicles. This is especially true when traveling over floor irregularities: arbitrary
irregularities will afect only one wheel at a time. Thus, since the two other drive wheels stay in
contact with the i@und, they provide moreaction andforce the affected wheel to slip.
Therefore, overall distance traveled will be eetedproperly by the amount of travel idited
by odometry.

Other attempts at ipmoving odometricaccuracy are based on more detailed modeling. For
example, Larsson et al. [1994] used circular segments taceephe linear segments in each
sampling period. The benefits of this approach are relatively small. Boyden and Velinsky [1994]
compared (in simulations) conventiomalometrictechniques, based on kinematics only, to solutions
based on the dynamics of the vehicle. They presented simulation results to show that for both
differentially and conventionalliytsered wheeled mobil®bots, the kinematic model wascurate
only at slower speeds up to 0.3 m/s when performing a tight turn. This result agrees with
experimental observations, which suggest that errors due to wheel slippage can be reduced to some
degree by limiting the vehicle's speguting turning, and biimiting accelerations.

5.3.1 Reduction of Systematic Odometry Errors

In this section we present specific methods for reducing systematic odometry errors. When applied
individually or in combination, these measures can improve odonatcaracy by orders of
magnitude.

5.3.1.1 Auiliary Wheelsand Basic Encoder Trier

It is generally possible to improve odometimcuracy by adding a pair of “knife-edge,” non-load-
bearingencoder wheeJsas shown conceptually in Figure 5.7. Since these wheels are not used for
transmitting power, they can be made to be very thin and with only a thin layer of rubber as a tire.
Such a design is feasible for differential-drive, tricycle-drive, and Ackerman vehicles.

Hongo et al. [1987] had built such a set of encoder wheels, to improgeduscy of a large
differential-drive mobile robot weighing 350 kilograms (770 Ib). Hongo et al. report that, after
careful calibration, their vehicle had a position error of less tham#ld® eters (8 in¥or a travel
distance of 50 metef464 ft). The ground suate on which this experiment was carried out was a
“well-paved” road.
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5.3.1.2 The Basic Encoder Tiex

An alternative approach is the use of a trailer with two Drlve

encoder wheels [Fan et al., 1994; 1995]. Such BRcoder motors Encodel
encoder trailerwas recently built and tested at thewheel Wheel
University of Michigan (see Figure 5.8). This encoder 1 '75"7\,;}7'

trailer was designed to be attached to a Remotec wheels

Andros V tracked vehicle [REMOTEC]. As was

explained in Sectiod.3, it is virtually impossible to
use odometry with tracked vehiclegdause of the
large amount of slippage between the tracks and fifwre 5.7 Conceptual rawing o a set o

floor during turning. The idea of the encoder trailer fgc0%e" Wheels for a differential drive vehicle.

to perform odometry whenever the ground elcter-

istics allow one to do so. Then, when thedroshas to move over small obstacles, stairs, or
otherwise uneven ground, the encoder trailer would be raised. The argument for this part-time
deployment of the encoder trailer is that in many applicationsaibet may travemostly on
reasonably smooth concretedts and that it would thus benefibst of the timé&rom the encoder
trailer's odometry.

5.3.1.3 Systenti@ Calibration

Another approach to improving odometaccuracy
without any additional devices or sensors is based
the careful calibration of a mobile robot. As wa
explained in Sectiob.1, systematic errors are inhers==
ent properties odach individuatobot. They change
very slowly as the result of wear or of different loa
distributions. Thus, these errors remain almost co
stant over extended periods of time [Tsumura et
1981]. One way to reduce suchraes is vehicle- ©
specific calibration. However, calibration is difficult: e o
because even minute deviations in the geometry of th&,e 5.8: A simple encoder trailer. The trailer
vehicle or its parts (e.g., a change in wheel diamet&fe was designed and built at the University of
due to a different load distribution) may cause subtichigan for use with the Remotec's Andros V
stantial odometry errors. tracked vehicle. (Courtesy of The University of

Borenstein and Feng [1995a; 1995b] have devel<n9an)
oped a systematic procedure for the measurement and
correctionof odometry errors. This method requires
that the UMBmark procedure, described éctn
5.2.1, berun with at least five runsach in cw and
ccw directon. Borenstein and Feng define two new error att@ristics that are meaningful only
in the context of the UMBmark test. These characteristics, called Type A and Type B, represent
odometry errors in origation. A Type A is defined as an ortation eror thatreduces (or
increases)the total amount of tation of therobot during the square-path experimenbath cw
and ccw directionBy contrast, Type B is defined as an orientatimaordhatreduces (or increases)
the total amount of tation of therobot during the square-path experimenme direction, but
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increases (or reducethie amount of r@ation when going in thether direction Examples for Type
A and Type B errors are shown in Figure 5.9.

LA
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gl I8 \ |-
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Figure 5.9: Type A and Type B errors in the ccw and cw directions. a. Type A
errors are caused only by the wheelbase error E,. b. Type B errors are caused
only by unequal wheel diameters (E,).

Figure 5.9a shows a case where the robot turned four times for a nominal amount of 90 degrees
per turn. However, because the actual wheelbase of the vehicle was larger than the nominal value,
the vehicle actuallyurned only 85 degrees e@ach orner of the square path. In the example of
Figure 5.9 the robaictually tirned onlyB,, = 4x85 = 34C, instead of the desirél} . ,ina= 360 .

One can thus observe thaboth the cw and the ccwxperiment the robot ends up turniagsthan
the desired amount, i.e.,

|8total, cwI < B nominall and B total, CC\I\I< B nomirlal-

Hence, the orientatiorr®r is of Type A.
In Figure 5.9b the traptory of a robot with unequal wheel diat@rs is shown. Thisrer

expresses itself in aucved path that adds to the overall ot&ion at the end of theun in ccw
directon, but it reduces the overaltadion in the ccw direatn, i.e.,

|etotal, cch > B nominJI bUt |e totaI,C\L < B nomirlal-
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Thus, the orientation error in Figure 5.9b is of Type B.

In an actual run Type A and Type B errors will of course occur together. The problem is therefore
how to distinguish between Type A and Type B errors and how to compute correction factors for
these errors from the measured final position errors of the robot in the UMBmark test. This question
will be addressed next.

Figure 5.9a shows the contribution of Type A errors. We recall that Type A errors are caused
mostly by E,. We also recall that Type A errors cause too much or too little turning at the corners
of the square path. The (unknown) amount of erroneous rotation in each nominal 90-degree turn is
denoted as o and measured in [rad].

Figure 5.9b shows the contribution of Type B errors. We recall that Type B errors are caused
mostly by the ratio between wheel diameters E,;. We also recall that Type B errors cause a slightly
curved path instead of a straight one during the four straight legs of the square path. Because of the
curved motion, the robot will have gained an incremental orientation error, denoted {3, at the end of
each straight leg.

We omit here the derivation of expressions for & and [3, which can be found from simple geometric
relations in Figure 5.9 (see [Borenstein and Feng, 1995a] for a detailed derivation). Here we just
present the results:

_ XCAgA,cw * XCAgA,ccw 180°

-4L i

(5.9)

solves for o in [°] and

B _ XCAgA,cw_XCAgA,ccw 180°

5.10
-4L i -1

solves for B in [°].

Using simple geometric relations, the radius of curvature R of the curved path of Figure 5.9b can
be found as

L2

- , (5.11)
sinf3/2

Once the radius R is computed, it is easy to determine the ratio between the two wheel diameters
that caused the robot to travel on a curved, instead of a straight path

D  R+b2

E =

R
¢ D R-b2° (5.12)

Similarly one can compute the wheelbase error E,. Since the wheelbase b is directly proportional
to the actual amount of rotation, one can use the proportion:
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actual — nominal (5.13)
90° 90° -«
so that
G
actual — m nominal (5.14)

where, per definition of Equation (5.2)

o9
b 90° -q

(5.15)

OnceE, andE, are computed, it is straightforward to use their values as compensatiors f
in the controller software [see Borenstein and Feng, 1995a; 1995b]. The result is a 10- to 20-fold
reduction in systematic errors.

Figure 5.10 shows the result of a typical calibration sesBipandD, are the effective wheel
diameters, and is the effective wheelbase.
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100+ ° o
© o
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Figure 5.10: Position rrors after completion of the bidirectional square-path
experiment (4 x 4 m).

Before calibration: b = 340.00 mm, Dg/D, = 1.00000.

After calibration: b = 336.17, Di/D, = 1.00084.

-200+
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This calibration procedure can be performed with nothing more than an ordinary tape measure.
It takes about two hoursttan the compdte calibratiorprocedure and measure the individual return
errors with a tape measure.

5.3.2 Reducing Non-Systematic Odometry Errors

This section introduces methods for the reduction of non-systematic odometry errors. The methods
discussed in Sectidh3.2.2 may at first confuse the readecéuse they were implemented on the
somewhat complex experimental platform describederti® 1.3.7. However, the methods of
Section 5.3.2.2 can be applied to many other kinematic configurations, and efforts inetttadirdir

are subject ofurrently ongoing research at the University of Michigan.

5.3.2.1 Mutual Referencing

Sugiyama [1993] proposed to use twbots that could measure their positions mutually. When one
of the robots moves to anotheapt, the other remainglisbbserves the matn, and étermines

the first robot's new posin. In other words, at any time one robot localizes itself with reference to
a fixed object: the standingbot. However, this stop and go approéiits the efficiency of the
robots.

5.3.2.2 Internal Pasion Error Correction

A unique way for reducing odometry errors even furthéntisrnal Position Error Correction
(IPEC). With this approach two mobile robots mutually eotrtheirodometry errors. However,
unlike the approach described ieac80n5.3.2.1, the IPEC method works while both robots are in
continuous, fast motion [Borenstein, 1994a]. To implement this method, it is required that both
robots can measure their relative distance and bearingiaonslly andaccurately. Coincidentally,

the MDOF vehicle with compliant linkage (described in Sec. 1.3.7) offexstigxhese features, and

the IPEC method was therefore implemented and denadedtion thaMDOF vehicle. This
implementation is namedompliant Linkage Autonomous Platform with fios Error Recovery
(CLAPPER).

The CLAPPER's compliant linkage instrumentation wastrated in Chapter 1, Figude15. This
setup provides real-time feedback on the relative position andair@nof the two trucks. An
absolute encoder at each end measures the rotation of each truck (with respect to the linkage) with
a resolution of 0.3 degrees, while a linear encoder is used to measure the separation distance to
within 5 millimeters(0.2 in).Each truck computes its own dkeseckoned position and heading in
conventional fashion, based on d&m@ment and velocityiormation derived from its left and right
drive-wheel encoders. By examining the perceived odometry solutions of the two robot platforms
in conjunction with their known relative origtions, theCLAPPER system can detect and
significantly reduce heading errors for both trucks (see video clip in [Borenstein, 1995V].)

The principle of operation is based on the conceptmfr growth ratepresented by Borenstein
[19944a,1995a], who makes a distinction between “fast-growing” and “slow-growing” odometry
errors. For example, when a differentialleeredrobot traverses a floor irregularity it will
immediately experience appreciable orientationreor (i.e., a fast-growing error). The assdeid
lateral displacementrior, however, is initially very small (i.e., a slow-growing error), but grows in
an unbounded fashion as a consequence of thetati@mearor. The internal error cagction
algorithm performs relative position measurements with a sufficiently fasteipate(20 ms) to
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allow each truck to detefidst-growingerrors in orietation, while relying on theafct that the lateral
position errorsaccrued by both platforms during the sampling interval were small.

Figure 5.11 explains how this method works. After traversing a bump Truck A'tadioenwill
change (a faainknown to Truck A's odometry comfation). Truck A is therefore exgting to
“see” Truck B along the extension of ling However, because of tiphysically incurred r@tion
of Truck A, the absolute encoder on truck A wilboet that truck B is nowctually seen along line
Ln. The angular difference betwegnand
L. is the thus measured odometry otation

error of Truck A, which can be cetted :/Original path
immediately. Onelwuld note that even if Ml

Truck B encountered a bump at the same —s|jClat—

. . . . Lateral displacement
time, the resulting rotation of Truck B would I'l at end of sampling interval

not affect the orientationrer measurement. [
The compliant linkage in essence forms a I
pseudo-stable heading reference in world
coordirates, its own orientation being dic-
tated solely by the relative translations of its
end points, which in turn are affted only
by the lateral displacements of the two
trucks. Since the lateral displacements are
slow growing the linkage rotates only a very
small amount between encoder samples. The
fast-growingazimuthal disturbances of the
trucks, on the other hand, are not coupled
through the rotational joints to the linkage,
thus allowing the rotary encoders to detect

i
. . : ) t ‘ 1 Truck A actually
and quantify the instantaneous orientatiof ck A eXQect_g I L. "sees"Trck B
errors of the trucks, even when both are ifp "see” Truck F‘Xer/ Lﬁl/ " along this line
motion. Borenstein [1994a; 1995a] provide&ond this line | 0 Actual orientation

Direction after
traversing the
bump

traversing
bump

Curved path
while traversing
bump

a more complete description of thimova- \y\, i error A,
‘twe.cor)cep‘t and reports experimental results | Jl /II/ Measured orientation
indicating inproved odometry performance lwl errar A6y,

of up to two orders of magnitude over con- | 7%\

ventional mobile robots. 1T | n
It should be noted that the rather complex T - ﬁJ
kinematic design of the MDOF vehicle is not h\ I u
necessary to implement the IPEC error I
correction method. Rather, tMDOF vehi- I’ \

cle happened to be available at the time and / J/r) ’
allowed the University of Michigan research- \
ers to implement and verify the validity of '

the IPEC approach. Currently, efforts are Truck B
under way to implement the IPEC method g

on a tractor-'grailer assemb.ly’ c_:allesrﬁar_t Figure 5.11: After traversing a bump, the resulting
E_nCOder Trailef (SET)’ _WhICh IS Show_n Il‘l. change of orientation of Truck A can be measured relative
Figure 5.12. The principle of operation iSo Truck B.

\booKclap4l.ds4;,wmf, 07/19/95
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| Original path
|
Il €lat

i Lateral displacement

I'| at end of sampling interval

Direction after
traversing the

Figure 5.12: The University of Michigan's “ Smart Encoder
Trailer’ (SET) is currently being instrumented to allow the
implementation of the IPEC error correction method explained in

Section 5.3.2.2. (Courtesy of The University of Michigan.) L/ obot actually
actuall
Robot expects ", " trail
27 "see,’i_tr% L ,I /P!ll -m ;gﬁg tfl;? /I?nre
ongt IS Jine
,La\ I |Actual orientation

illustrated in Figures.13. Simulation results, inchting L-error A8,
the feasibility of implementing the IPEC rhed on a 1 ! Measured orientation
tractor-trailer assembly, were presented in [Borenstein, ,%4 error Adp,
1994b]. ! | ill |
/ e
Encoder |
trailer

5.4 Inertial Navigation

An alternative method for enhancing dead reckoning is T

in_ertial navigation, initially develo_ped for deployment on. gure 5.13: Proposed implementation of
aircraft. The technology was quickly adapted for use @ ipEc method on a tractor-trailer

missiles and in outer space, dodnd its way to mari- assembly.

time usage when the nuclear submaringgtilus and

Skatewere suitably equipped in support of their transpo-

lar voyages in 1958 [Dunlap and Shufeldt, 1972]. The

principle of operation involves continuous sensing of mirageelerations in each of the three
directional axes and integrating over time to derive velocity and position. A gyroscopicaligestab
sensor platform is used to maintain consistent orientation of the three accelerdmetgisout this
process.

Although fairly simple in concept, the specifics of impletag¢ion are rather demanding. This is
mainly caused by error sources that adversely affect thifitgtabthe gyros used to ensure correct
attitude. The resulting high mafacturing and maintenance costs have effectively precluded any
practical application of this technology in the aused guided vehiclendustry [Turpin, 1986]. For
example, a high-qualityzertial navigationsysten{INS) such as would be found in a commercial
airliner will have a typical drift of laout 1850 raters (1 nauticahile) perhour of operation, and cost
between $50K and $70K [Byrne et al., 1992]. High-end INS packages used in groucat@pgli
have shown performance aétber tharD.1 percent of distance traveled, but cost in the neighbor-
hood of $100K t&200K, while lower performance versions (i.e., one percent of distance traveled)
run between $20K to $50K [Dahlin and Krantz, 1988].
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Experimental results from the Université Morllipe in France [Vaganay et all993a; 1993b],
from the University of Oxford in the U.K. [Barshan and Durrant-Whyte, 1993; 1995], and from the
University of Michigan indicate that purely inertial navigation approach is not realistically
advantageous (i.e., too expensive) for mobile robot egpins. As a consequence, the use of INS
hardware in robotics apphtions to date has been generfyted to scenarios that aren’t readily
addressable by more practical alternatives. An example of such a situation is presented by Sammarco
[1990;1994], who reports plieninary results in the case of an INS used to control aonamtous
vehicle in a mining applicain.

Inertial navigation is attractive mainly because it is self-contained and no external motion
information is needed for positioning. One important advantage of inertial navigation istitg@b
provide fast, low-latencgynamic measurements. Furthermore, inertial navigation sensors typically
have noise and error sources that are independent from the external sensors [Parish and Grabbe,
1993]. For example, the noise arrdoe from an inertial navigation system should be quite different
from that of, say, a landmark-based system. Inertial navigation sensors are self-contained, non-
radiating, and non-jammableukdamentally, gyros provide angulate and accelerometgsovide
velocity rate information. Dynamic information is provided througbadimeasurements. However,
the main disadvantage is that the angular rate data and the linear velocity rate data must be
integrated once and twice (respectweto provide orietation and linear postn, resgctively.
Thus, even very small errors in thee nformation can cause an unbounded growth in the error of
integrated measurements. As we remarked in Se2tiyrihe price of vergccurate laserygos and
optical fiber gyros have come down significantly. With price tags of $1,000 to $5,000, these devices
have now become more suitable for many mobile robotcgifns.

5.4.1 Accelerometers

The suitability ofaccelerometerfr mobile robot positioning was evalied at the University of
Michigan. In this informal study it was found that there is a very poor signal-to-noise ratio at lower
accelerations (i.e., during low-speeuris). Accelerometers alsaffer from extensive drift, and they

are sensitive to uneven groundschuse any distbance from a pegttly horizontal position will

cause the sensor to detect the gravitational acceletat®ne low-cost inertial navigation system
aimed at overcoming the latteroblem included a tilt sensor [Barshan and Durrant-Whyte, 1993;
1995]. The tilt information provided by the tilt sensor was supplied tac¢belerometer to cancel

the gravity component pmgting on each axis of the accelerometer. Nonetheless, the results
obtained from the tilt-compeated system indicate a position drift rate of 1 to 8 ¢h4to 3.1

in/s), depending on the frequency of acceleration changes. This is an unacceptalmdéesfor

most mobile robot apations.

5.4.2 Gyros

Gyros have long been used in robots to augment the sometimes erroneous dead-reckoning
information of mobile robots. As we explained in Chapter 2, mechanical gyros are either inhibitively
expensive for mobile robot apgditions, or they have too much drift. Recentkby Barshan and
Durrant-Whyte [1993; 1994; 1995] aimed at developing an INS based ontapdidysos, and a
fiber-optic gyro was tested by Komoriya and Oyama [1994].
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5.4.2.1 Barshan and Durrant-Wte [1993; 1994; 1995]

Barshan and Durrant-Whyte developed a somlaittd INS using two solid-statgrgs, a solid-sate
triaxial accelerometer, and a two-axis tilt sensor. The cost of the emrgistem wag5,000
(roughly $8,000). Two differentygos were evalated in this wrk. One was the ENV-O5Syrostar
from [MURATA], and the other was theol8l State_Angular Rate Transducer$TARY gyroscope
manufactured by [GEC]. Barshan and Durrant-Whyte exatlithe pgormance of these two gyros
and found that theyu$fered relatively large drift, on the order of 5 to°A&in. The Oxford
researchers then developed a soptastid eror model for the gyros, which was subsequently used
in an Extended Kalman Filte(EKF — see Appendix A). Figure 5.14 shows the results of the
experiment for th&TARTgyro (left-hand side) and th@&yrostar (right-hand side). The thin plotted
lines represent the raw output from the gyros, while the thidkepldines show the output after
conditioning the raw akta in the EKF.

The two upper plots in Figue 14 show the measurement noise of the two gyros while they were
stationary (i.e., the rotational ratput was zero, and the gyros should ideally skow 0°/s ).
Barshan and Durrant-Whyte determined that the standard deviaére used as a measure for the
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Figure 5.14: Angular rate (top) and orientation (bottom) for zero-input case (i.e., gyro
remains stationary) of the START gyro (left) and the Gyrostar (right) when the bias
error is negative. The erroneous observations (due mostly to drift) are shown as the
thin line, while the EKF output, which compensates for the error, is shown as the
heavy line. (Adapted from [Barshan and Durrant-Whyte, 1995] © IEEE 1995.)
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amount of noise, wa3.16°/s for theSTARTgyro and 0.2%/s for theGyrostar. The drift in the rate
output, 10 minutes after switching on, &ed atl.35°/s for theGyrostar (drift-rate datdor the
STARTwas not given).

The more interesting result from the experiment in Figure 5.14 is the drift in the angular output,
shown in the lower two plots. We recall that in most mobile robot@gifns one is interested in

the heading of the robot, not thete of change in the heading. The measureddate  must thus be
integrated to obtai. After integration, any small constant bias in thmeasurementins into
a constant-slope, unboundeaerias shown clearly in the lower two plots of Figure 5.14. At the end
of the five-minute experiment, tf&TARThad accumulated a headirmgoe of -70.8 degrees while
that of theGyrostarwas -59 degrees (see thin lines in Figure 5.14). However, with the EKF, the
accumuhted erors were much smaller: 12 degrees was the maximum heading error EIrARS
gyro, while that of th&yrostarwas -3.8 degrees.

Overall, the results from applying the EKF show a five- to six-fold reduction in the angular
measurement after a five-minute test period. However, even with the EKF, atériffrl to 3 /min
can still be expcted.

5.4.2.2 Komoriya and Oyama [1994]

Komoriya and Oyama [1994] conchied a sidy of a system that uses an optical fiber gyroscope, in
conjunction with odometrynformation, to improve the overatcuracy of position estimation. This
fusion of information from two different sensor systems is realized through a Kalman filter (see
Appendix A).

Figure 5.15 shows a computer simulation of a path-following study without (Figure 5.15a) and
with (Figure 5.15Db) the fusion of gyro information. THEpses show the reliability of position
estimates (th@robalility that therobot stays within thellgses ateach estimated position is 90
percent in this simulation).

Distribution of estimated

position error (x, y) Distribution of estimated
£ gfﬂfﬂ'on error (X‘H)H Distributicn of estimated \3
y = [ position error (X, y}
X F-- X gl :
Start e
position X
\ ¥ o—o Specified path Start 0
. Estimated trajectory pcismon AN

Actual trajectory

Figure 5.15: Computer simulation of a mobile robot run.. (Adapted from [Komoriya and Oyama, 1994].)
a. Only odometry, without gyro information. b. Odometry and gyro information fused.
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In order to test the edttiveness of their medd,
Komoriya and Oyama also coratad actual
experiments wittMelboy, the mobile robot shown |
in Figure 5.16. In one set of experimenslboy
was instructed to follow the path shown i
Figure 5.17a.Melboys maximum speed was
0.14 m/s(0.5 ft/s) and that speed was furthe
reduced at the corners of the path in Figure 5.1
The final position errors without and with gyro
information are compared and shown i
Figure 5.17b for 20 runs. Figure 5.17b shows th
the deviation of the position estimation errors fro
the mean value is smaller in the case where t
gyro data was usethote that a large average
deviation from the mean value icdtes larger
non-systematicreors, as explained in Sec. 5.1)
Komoriya and Oyama explain that the noticeab
deviation of the mean values from the origin i
both cases could be reduced by careful calibrati
of the systematic errors (see Sec. 5.3) of the moh
robot.
We should note thdtom the description of this
experiment in [Komoriya and Oyama, 1994] it i
not immedately evident how the “position estima
tion error” (i.e., the circles) in Figure 5.17b was*
found. In our opinion, these points should haviegure 5.16: Melboy, the mobile robot used by
been measured by marking the return position §$moriya and Oyama for fusing odometry and gyro
the robot on the floor (or by any equiva|engata. (Courtesy of [Komoriya and Oyama, 1994].)
method that records the absolute position of the
robot and compares it with the internally computed position estimation). The results of the plot in
Figure 5.17b, however, appear to be acouratdor the absolute position error of the robot. In our
experience an error on the order of several ceténs, nomilimeters, bould be expcted after
completing the path of Figure 5.17a (see, for example, [Borenstein and Koren, 1987; Borenstein and
Feng, 1995a; Russdl995].) Therefore, we interpret thatd in Figures.17b as showing a position
error that wagsomputeddy the onboard computer, but not measured absolutely.

5.5 Summary

» Odometry is a central part of almost all mobile robot navigation systems.

« Improvements irodometrytechniques will not change their incremental nature, i.e., even for
improved odometry, periodic absolute position ajed are necesya
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Figure 5.17: Experimental results from Melboy using odometry with and without a fiber-optic gyro.

a. Actual trajectory of the robot for a triangular path.

b. Position estimation errors of the robot after completing the path of a. Black circles show the errors
without gyro; white circles show the errors with the gyro.

(Adapted from [Komoriya and Oyama, 1994].)

+ More accuratedometry vill reduce the requirements on absolute positipdates and will
facilitate the solution of landmark and pabased positioning.

«+ Inertial navigation systems alone are generally inadedaaperiods of time that exeed a few
minutes. However, inertial navigation can provédeurate Isort-term information, for example
orientation changes during a robot maneuver. Software compensation, usually by means of a
Kalman filter, can significantly improve heading measureraentracy.



