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CHAPTER 9
VISION-BASED POSITIONING

A core problem in robotics is the determination of the position and orientation (often referred to as
the pose) of a mobile robot in its environment. The basic principles of landmark-based and map-based
positioning also apply to the vision-based positioning or localization which relies on optical sensors
in contrast to ultrasound, dead-reckoning and inertial sensors. Common optical sensors include
laser-based range finders and photometric cameras using CCD arrays.

Visual sensing provides a tremendous amount of information about a robot's environment, and
it is potentially the most powerful source of information among all the sensors used on robots to date.
Due to the wealth of information, however, extraction of visual features for positioning is not an easy
task.The problem of localization by vision has received considerable attention and many techniques
have been suggested. The basic components of the localization process are: 
C representations of the environment,
C sensing models, and
C localization algorithms. 

Most localization techniques provide absolute or relative position and/or the orientation of
sensors. Techniques vary substantially, depending on the sensors, their geometric models, and the
representation of the environment.

The geometric information about the environment can be given in the form of landmarks, object
models and maps in two or three dimensions. A vision sensor or multiple vision sensors should
capture image features or regions that match the landmarks or maps. On the other hand, landmarks,
object models, and maps should provide necessary spatial information that is easy to be sensed. When
landmarks or maps of an environment are not available, landmark selection and map building should
be part of a localization method.

In this chapter, we review vision-based positioning methods which have not been explained in the
previous chapters. In a wider sense, “positioning” means finding position and orientation of a sensor
or a robot. Since the general framework of landmark-based and map-based positioning, as well as the
methods using ultrasound and laser range sensors have been discussed, this chapter focuses on the
approaches that use photometric vision sensors, i.e., cameras.  We will begin with a brief introduction
of a vision sensor model and describe the methods that use landmarks, object models and maps, and
the methods for map building.

9.1 Camera Model and Localization

Geometric models of photometric cameras are of critical importance for finding geometric position
and orientation of the sensors. The most common model for photometric cameras is the pin-hole
camera with perspective projection as shown in Fig. 9.1. Photometric cameras using optical lens can
be modeled as a pin-hole camera. The coordinate system (X, Y, Z) is a three-dimensional camera
coordinate system, and (x, y) is a sensor (image) coordinate system.  A three-dimensional feature in
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(9.1)

Figure 9.1: Perspective camera model.

an object is projected onto the image plane (x, y).  The relationship for this perspective projection is
given by

Although the range information is collapsed in this projection, the angle or orientation of the
object point can be obtained if the focal length f is known and there is no distortion of rays due to lens
distortion. The internal parameters of the camera are called intrinsic camera parameters and they
include the effective focal length f, the radial lens distortion factor, and the image scanning
parameters, which are used for estimating the physical size of the image plane. The orientation and
position of the camera coordinate system (X, Y, Z) can be described by six parameters, three for
orientation and three for position, and they are called extrinsic camera parameters. They represent
the relationship between the camera coordinates (X, Y, Z) and the world or object coordinates (X ,W

Y , Z ). Landmarks and maps are usually represented in the world coordinate system.W W

The problem of localization is to determine the position and orientation of a sensor (or a mobile
robot) by matching the sensed visual features in one or more image(s) to the object features provided
by landmarks or maps. Obviously a single feature would not provide enough information for position
and orientation, so multiple features are required. Depending on the sensors, the sensing schemes,
and the representations of the environment, localization techniques vary significantly.
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Figure 9.2: Localization using landmark features.

9.2 Landmark-Based Positioning

The representation of the environment can be given in the form of very simple features such as points
and lines, more complex patterns, or three-dimensional models of objects and environment. In this
section, the approaches based on simple landmark features are discussed.

9.2.1 Two-Dimensional Positioning Using a Single Camera

If a camera is mounted on a mobile robot with its optical axis parallel to the floor and vertical edges
of an environment provide landmarks, then the positioning problem becomes two-dimensional. In this
case, the vertical edges provide point features and two-dimensional positioning requires identification
of three unique features. If the features are uniquely identifiable and their positions are known, then
the position and orientation of the pin-hole camera can be uniquely determined as illustrated in
Fig. 9.2a. However, it is not always possible to uniquely identify simple features such as points and
lines in an image. Vertical lines are not usually identifiable unless a strong constraint is imposed. This
is illustrated in Fig. 9.2b.

Sugihara [1988] considered two cases of point location problems. In one case the vertical edges
are distinguishable from each other, but the exact directions in which the edges are seen are not given.
In this case, the order in which the edges appear is given. If there are only two landmark points, the
measurement of angles between the corresponding rays restricts the possible camera position to part
of a circle as shown in Fig. 9.3a. Three landmark points uniquely determine the camera position which
is one of the intersections of the two circles determined by the three mark points as depicted in
Fig. 9.3b. The point location algorithm first establishes a correspondence between the three landmark
points in the environment and three observed features in an image.  Then, the algorithm measures the
angles between the rays. To measure the correct angles, the camera should be calibrated for its
intrinsic parameters. If there are more than three pairs of rays and landmarks, only the first three pairs
are used for localization, while the remaining pairs of rays and landmarks can be used for verification.
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Figure 9.3: 
a. Possible camera locations (circular arc) determined by two rays and corresponding mark

points.
b. Unique camera position determined by three rays and corresponding mark points.
c. Possible camera locations (shaded region) determined by two noisy rays and

corresponding mark points.
(Adapted from [Sugihara 1988; Krotkov 1989]).

In the second case, in which k vertical edges are indistinguishable from each other, the location
algorithm finds all the solutions by investigating all the possibilities of correspondences. The algorithm
first chooses any four rays, say r , r , r , and r . For any ordered quadruplet (p , p , p , p ) out of n1 2 3 4 i j l m

mark points p ,...,p , it solves for the position based on the assumption that  r , r , r , and r1 n 1 2 3 4

correspond to p, p, p, and p ,  respectively. For n(n-1)(n-2)(n-3) different quadruples, the algorithmi j l m

can solve for the position in O(n ) time. Sugihara also proposed an algorithm that runs in O(n  log 4 3

n) time with O(n) space or in O(n ) time with O(n ) space. In the second part of the paper, he 3  2

considers the case where the marks are distinguishable but the directions of rays are inaccurate. In
this case, an estimated position falls in a region instead of a point.

Krotkov [1989] followed the approach of Sugihara and formulated the positioning problem as
a search in a tree of interpretation (pairing of landmark directions and landmark points).  He
developed an algorithm to search the tree efficiently and to determine the solution positions, taking
into account errors in the landmark direction angle. According to his analysis, if the error in angle
measurement is at most *2, then the possible camera location lies not on an arc of a circle, but in the
shaded region shown in Fig. 3c. This region is bounded by two circular arcs.

Krotkov presented simulation results and analyses for the worst-case errors and probabilistic
errors in ray angle measurements. The conclusions from the simulation results are: 
C the number of solution positions computed by his algorithm depends significantly on the number

of angular observations and the observation uncertainty *2.
C The distribution of solution errors is approximately a Gaussian whose variance is a function of

*2 for all the angular observation errors he used: a. uniform, b. normal, and c. the worst-case
distribution.
Betke and Gurvits [1994] proposed an algorithm for robot positioning based on ray angle

measurements using a single camera.  Chenavier and Crowley [1992] added an odometric sensor to
landmark-based ray measurements and used an extended Kalman filter for combining vision and
odometric information.
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9.2.2 Two-Dimensional Positioning Using Stereo Cameras

Hager and Atiya [1993] developed a method that uses a stereo pair of cameras to determine
correspondence between observed landmarks and a pre-loaded map, and to estimate the two-
dimensional location of the sensor from the correspondence. Landmarks are derived from vertical
edges. By using two cameras for stereo range imaging the algorithm can determine the two-
dimensional locations of observed points — in contrast to the ray angles used by single-camera
approaches.

Hager and Atiya's algorithm performs localization by recognizing ambiguous sets of correspon-
dences between all the possible triplets of map points p , p , p  and those of observed points o , o , o .i j k a b c

It achieves this by transforming both observed data and stored map points into a representation that
is invariant to translation and rotation, and directly comparing observed and stored entities. The
permissible range of triangle parameters due to sensor distortion and noise is computed and taken into
account.

For n map points and m observed points, the off-line initialization stage consumes O(n  log n) 3

time to compute and sort all triangle parameters from the map points.  At run time, the worst case
complexity is O(m  (n  + log n)).  However, an efficient strategy of marking and scanning reduces3 3

the search space and real-time performance (half a second) is demonstrated for five observed and 40
stored landmarks.

9.3 Camera-Calibration Approaches

The camera-calibration approaches are more complex than the two-dimensional localization
algorithms discussed earlier. This is because calibration procedures compute the intrinsic and extrinsic
camera parameters from a set of multiple features provided by landmarks. Their aim is to establish
the three-dimensional position and orientation of a camera with respect to a reference coordinate
system. The intrinsic camera parameters include the effective focal length, the lens distortion
parameters, and the parameters for image sensor size. The computed extrinsic parameters provide
three-dimensional position and orientation information of a camera coordinate system relative to the
object or world coordinate system where the features are represented.

The camera calibration is a complex problem because of these difficulties: 
C All the intrinsic and extrinsic parameters should be computed from the two-dimensional

projections of a limited number of feature points, 
C the parameters are inter-related, and 
C the formulation is non-linear due to the perspectivity of the pin-hole camera model.

The relationship between the three-dimensional camera coordinate system (see Fig. 1)

X = [X, Y, Z]  (9.2)T

and the object coordinate system

X  = [X , Y , Z ]  (9.3)W W W W
T

is given by a rigid body transformation
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(9.5)

Figure 9.4: Camera calibration using multiple features and a radial alignment constraint.

 X = RX  + T (9.4)W

where

are the rotation and translation matrices, respectively.

Determination of camera position and orientation from many image features has been a classic
problem of photogrammetry and has been investigated extensively [Slama 1980; Wolf 1983]. Some
photogrammetry methods (as described in [Wolf 1983]) solved for the translation and rotation
parameters by nonlinear least-squares techniques. Early work in computer vision includes that by
Fischler and Bolles  [1981] and Ganapathy [1984]. Fischler and Bolles found the solution by first
computing the length of rays between the camera center (point O in Fig. 9.1) and the feature
projections on the image plane (x, y). They also established results on the number of solutions for
various number of feature points. According to their analysis, at least six points are required to get
a unique solution. Ganapathy [1984] showed similar results and presented somewhat simplified
algorithms.

More recently several newer methods were proposed for solving for camera position and
orientation parameters. The calibration technique proposed by Tsai [1986] is probably the most
complete and best known method, and many versions of implementation code are available in the
public domain. The Tsai's algorithm decomposes the solution for 12 parameters (nine for rotation and
three for translation) into multiple stages by introducing a constraint. The radial alignment constraint
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Figure 9.5: Finding correspondence between an internal model and an observed scene.

assumes that the lens distortion occurs only in the radial direction from the optical axis Z of the
camera. Using this constraint, six parameters r , r , r , r , t , and t  are computed first, and theXX XY YX YY X  Y

constraint of the rigid body transformation RR  =I is used to compute r , r , r , r , and r . T
XZ YZ ZX ZY ZZ

Among the remaining parameters, the effective focal length f and t  are first computed neglecting theZ

radial lens distortion parameter 6, and then used for estimating 6 by a nonlinear optimization
procedure. The values of f and t  are also updated as a result of the optimization.  Further work onZ

camera calibration has been done by Lenz and Tsai [1988].
Liu et al. [1990] first suggested the use of straight lines and points as features for estimating

extrinsic camera parameters. Line features are usually abundant in indoor and some outdoor
environments and less sensitive to noise than point features. The constraint used for the algorithms
is that a three-dimensional line in the camera coordinate system (X, Y, Z) should lie in the plane
formed by the projected two-dimensional line in the image plane and the optical center O in Fig 9.1.
This constraint is used for computing nine rotation parameters separately from three translation
parameters. They present linear and nonlinear algorithms for solutions.  According to Liu et al.'s
analysis, eight-line or six-point correspondences are required for the linear method, and three-line or
three-point correspondences are required for the nonlinear method. A separate linear method for
translation parameters requires three-line or two-point correspondences.

Haralick et al. [1989] reported their comprehensive investigation for position estimation from
two-dimensional and three-dimensional model features and two-dimensional and three-dimensional
sensed features. Other approaches based on different formulations and solutions include Kumar
[1988], Yuan [1989], and Chen [1991].

9.4 Model-Based Approaches

A priori information about an environment can be given in more comprehensive form than features
such as two-dimensional or three-dimensional models of environment structure and digital elevation
maps (DEM). The geometric models often include three-dimensional models of buildings, indoor
structure and floor maps. For localization, the two-dimensional visual observations should capture
the features of the environment that can be matched to the preloaded model with minimum
uncertainty. Figure 5 illustrates the match between models and image features. The problem is that
the two-dimensional observations and the three-dimensional world models are in different forms. This
is basically the problem of object recognition in computer vision: (1) identifying objects and (2)
estimating pose from the identified objects.
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Figure 9.6: Finding a location on a digital elevation maps (DEM) that matches a visual
scene observed from a point. The 'x' marks a possible location in the DEM that could
generate the observed visual scene to the right.

9.4.1 Three-Dimensional Geometric Model-Based Positioning

Fennema et al. [1990] outlined a system for navigating a robot in a partially modeled environment.
The system is able to predict the results of its actions by an internal model of its environment and
models of its actions. Sensing is used to correct the model's predictions about current location or to
progress towards some goal. Motions are composed in a hierarchical planner that sketches overall
paths and details the short term path. Control of the robot is broken down into the action level, the
plan level, and the goal level. Landmarks are chosen to measure progress in the plan. The system must
receive perceptual confirmation that a step in the plan has been completed before it will move to the
next part of the plan. Later steps in a plan expand in detail as earlier steps are completed. The
environment is modeled in a graph structure of connected nodes called locales. Locales may exist at
a variety of scales in different hierarchies of the map. Other information is kept in the system
associated with each locale to provide more detail. Using these models the robot operates in a plan-
and monitor-cycle, confirming and refining plans to achieve overall goals.

The algorithm by Fennema et al. [1990] matches images to the map by first matching the two-
dimensional projection of landmarks to lines extracted from the image. The best fit minimizes the
difference between the model and the lines in the data. Once the correspondence between model and
two-dimensional image is found, the relation of the robot to the world coordinate system must be
found. This relation is expressed as the rotation and translation that will match the robot- and world-
systems. Matching is done by considering all possible sets of three landmarks. Once a close
correspondence is found between data and map, the new data is used to find a new estimate for the
actual pose.

Kak et al. [1990] used their robot's encoders to estimate its position and heading. The
approximate position is used to generate a two-dimensional scene from their three-dimensional world
model and the features in the generated scene are matched against those extracted from the observed
image. This method of image matching provides higher accuracy in position estimation.

Talluri and Aggarwal [1991; 1992] reported their extensive work on model-based positioning.
They use three-dimensional building models as a world model and a tree search is used to establish
a set of consistent correspondences. Talluri and Aggarwal [1993] wrote a good summary of their
algorithms as well as an extensive survey of some other vision-based positioning algorithms.
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9.4.2 Digital Elevation Map-Based Localization

For outdoor positioning, Thompson et al. [1993] developed a hierarchical system that compares
features extracted from a visual scene to features extracted from a digital elevation maps (DEM).
A number of identifiable features such as peaks, saddles, junctions, and endpoints are extracted from
the observed scene. Similarly, features like contours and ridges are extracted from the DEM. The
objective of the system is to match the features from the scene onto a location in the map. The feature
matching module interacts with each feature extractor as well as with a geometric inference module.
Each module may request information and respond to the others. Hypotheses are generated and
tested by the interaction of these feature extractors, geometric inference, and feature matching
modules.

In order to make matching more tractable, configurations of distinctive and easily identified
features are matched first. Using a group of features cuts down dramatically on the number of
possible comparisons. Using rare and easily spotted features is obviously advantageous to making an
efficient match. A number of inference strategies that express viewpoint constraints are consulted in
the geometric inference module. These viewpoint constraints are intersected as more features are
considered, narrowing the regions of possible robot location.

Sutherland [1993] presented work on identifying particular landmarks for good localization. A
function weighs configurations of landmarks for how useful they will be. It considers the resulting
area of uncertainty for projected points as well as relative elevation. Sutherland showed that a careful
choice of landmarks usually leads to improved localization.

Talluri and Aggarwal [1990] formulated position estimation using DEM as a constrained search
problem. They determined an expected image based on a hypothetical location and compared that to
the actual observed image. Possible correspondences are eliminated based on geometric constraints
between world model features and their projected images. A summary of their work is given in
[Talluri and Aggarwal, 1993].

9.5 Feature-Based Visual Map Building

The positioning methods described above use a priori information about the environment in the form
of landmarks, object models or maps. Sometimes pre-loaded maps and absolute references for
positions can be impractical since the robot's navigation is restricted to known structured
environments. When there is no a priori information, a robot can rely only on the information
obtained by its sensors.

The general framework for map-building has been discussed in the previous chapter. For
constructing the environment model, vision systems usually use image features detected at one or
more robot positions. According to the computer vision theory of structure from motion and stereo
vision, correct correspondences of image features detected in several locations can provide
information about the motion of the sensor (both translation and rotation), as well as of the three-
dimensional structure of the environment at the feature locations. The trajectory of the sensor can be
obtained by visual dead-reckoning, i.e., the integration of the estimated incremental motion. This is
illustrated in Fig. 9.7.

The object features detected in a sensor location become the relative reference for the subsequent
sensor locations. When correspondences are correctly established, vision methods can provide higher
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Figure 9.7: Illustration of map building and trajectory integration.

accuracy in position estimation than odometry or inertial navigation systems. On the other hand,
odometry and inertial sensors provide reliable position information up to certain degree and this can
assist the establishment of correspondence by limiting the search space for feature matching. A visual
map based on object features is a sparse description of environment structure.

Moravec [1981] used stereo cameras with variable baseline for obtaining environment structure
in the form of feature locations and estimating position of the sensors. A feature selection method was
suggested and coarse-to-fine correlation feature matching was used. The suggested error measure
is that the uncertainty in feature location is proportional to the distance from the sensor. 

Matthies and Shafer [1987] proposed a more systematic and effective error measure using a three-
dimensional Gaussian distribution. A Kalman filter was used for updating robot positions based on
the Gaussian error distribution of detected features.

Ayache and Faugeras [1987] used trinocular stereo and three-dimensional line features for
building, registering and fusing noise visual maps. They used an extended Kalman filter for combining
measurements obtained at different locations. 

9.6 Summary and Discussion

We reviewed some of the localization methods based only on photometric camera sensors. These
methods use:
C landmarks
C object models
C maps
C feature-based map-building

Most of the work discussed suggests methodologies that relate detected image features to object
features in an environment. Although the vision-based techniques can be combined with the methods
using dead-reckoning, inertial sensors, ultrasonic and laser-based sensors through sensor fusion,
tested methods under realistic conditions are still scarce.
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Similar to the landmark-based and map-based methods that were introduced in the previous
chapters, vision-based positioning is still in the stage of active research. It is directly related to most
of the computer vision methods, especially object recognition which involves identification of object
class and pose estimation from the identified object. As the research in many areas of computer vision
and image processing progresses, the results can be applied to vision-based positioning. In addition
to object recognition, relevant areas include structure from stereo, motion and contour, vision sensor
modeling, and low-level image processing. There are many vision techniques that are potentially
useful but have not been specifically applied to mobile robot positioning problems and tested under
realistic conditions.


