
Robotics
TOOLBOX
for use with MATLAB (Release 3)

Peter I. Corke
pic@brb.dmt.csiro.au

February 1996
http://www.brb.dmt.csiro.au/dmt/programs/autom/matlab.html

Peter I. Corke
CSIRO
Division of Manufacturing Technology
Preston, AUSTRALIA.
1994

Preface

1 Introduction

This Toolbox provides many functions that are useful in robotics and addresses
such areas as kinematics, dynamics, and trajectory generation. The Toolbox is
useful for simulation as well as analyzing results from experiments with real
robots. The Toolbox has been developed and used over the last few years to the
point where I rarely write ‘C’ code anymore for these kinds of tasks. I have used
MEX files to read data from an online robot controller (running under VxWorks)
via sockets, process it and display it graphically on a workstation computer. It
would be feasible, by extension of this communications mechanism, to perform
some online robot control functions via MATLAB.

The Toolbox is based on a very general method of representing the kinematics
and dynamics of serial-link manipulators by description matrices. These matri-
ces can be created by the user for any serial-link manipulator and a number of
examples are provided for well know robots such as the Puma 560 and the Stan-
ford arm. Such matrices provide a concise means of describing a robot model
and may facilitate the sharing of robot models across the research community.
This would allow simulation results to be compared in a much more meaningful
way than is currently done in the literature. The toolbox also provides functions
for manipulating datatypes such as vectors, homogeneous transformations and
unit-quaternions which are necessary to represent 3-dimensional position and
orientation.

The routines are generally written in a straightforward manner which allows
for easy understanding at the expense of computational efficiency. If you feel
strongly about computational efficiency then you can rewrite the function or
create a MEX version.

2 What's new

This release is mostly bug fixes, particularly in the Puma 560 parameters in
puma560(). Some of the function descriptions now contain example code — the

Robotics Toolbox Release 3 1–3

4 MATLAB version issues

function fdyn() in particular seemed always to result in many inquiries.

I have created a Toolbox home page

http://www.brb.dmt.csiro.au/dmt/programs/autom/matlab.html

which will always list the current released version number as well as bug fixes
and new code in between major releases.

One significant addition is, at last, a MEX version of the recursive Newton-Euler
function rne(). It is over 300 times faster than the M-file version and makes
forward dynamics quite respectable. Currently I am distributing only a binary
for Sun Sparc, rne.mexsol. If anybody is interested in creating a binary for
distribution for another platform please contact me. I personally would find a
DOS/Windows version very helpful but I don’t have the right compiler...

3 How to obtain the toolbox

The Robotics Toolbox is freely available from the MathWorks FTP server
ftp.mathworks.com in the directory pub/contrib/misc/robot. It is best to down-
load all files in that directory since the Toolbox functions are quite interdepen-
dent. The file robot.ps is a comprehensive manual with a tutorial introduction
and details of each Toolbox function. A menu-driven demonstration can be
invoked by the function rtdemo.

4 MATLAB version issues

The Toolbox works with MATLAB version 4 and has been tested on a Sun with
version 4.2c and under MS-Windows version 4.0. The Toolbox does not function
under MATLAB v3.x due to the significant changes introduced between MATLAB
versions. Problems have also been encountered with the Student edition, par-
ticularly the trajectory examples, since these require matrices larger than the
limits imposed. Cursory experiments with Octave 1.01 under Linux shows up
a number of language differences. In particular Octave doesn’t like comments

1Octave is a MATLAB like package that is available for anonymous ftp from

ftp://ftp.che.wisc.edu/pub/octave. The current version of Octave is now 1.1.1.

1–4

inside matrix definitions or DOS style CRLFs in M files, and does not support
the ‘...’ line continuation feature of MATLAB.

5 Acknowledgements

I have corresponded with a great many people via email since the first release of this toolbox. Some
have identified bugs and shortcomings in the documentation, and even better, some have provided
bug fixes and even new modules. I would particularly like to thank Chris Clover of Iowa State
University, Anders Robertsson and Jonas Sonnerfeldt of Lund Institute of Technology, Robert Biro
and Gary McMurray of Georgia Institute of Technlogy, and Jean-Luc Nougaret of IRISA for their
help.

6 Support, use in teaching, bug �xes, etc.

I’m always happy to correspond with people who have found genuine bugs or deficiencies in the
Toolbox, or who have suggestions about ways to improve its functionality. However I do draw the
line at providing help for people with their assignments and homework!

Many people are using the Toolbox for teaching and this is something that I would encourage. If
you plan to duplicate the documentation for class use then every copy must include the front page.

Robotics Toolbox Release 3 1–5

7 Manipulator kinematics

1
Tutorial

7 Manipulator kinematics

Kinematics is the study of motion without regard to the forces which cause it. Within kinematics
one studies the position, velocity and acceleration, and all higher order derivatives of the position
variables. The kinematics of manipulators involves the study of the geometric and time based
properties of the motion, and in particular how the various links move with respect to one another
and with time.

Typical robots are serial-link manipulators comprising a set of bodies, called links, in a chain,
connected by joints2. Each joint has one degree of freedom, either translational or rotational. For
a manipulator with n joints numbered from 1 to n, there are n + 1 links, numbered from 0 to n.
Link 0 is the base of the manipulator, generally fixed, and link n carries the end-effector. Joint i
connects links i and i � 1.

A link may be considered as a rigid body defining the relationship between two neighbouring joint
axes. A link can be specified by two numbers, the link length and link twist, which define the
relative location of the two axes in space. The link parameters for the first and last links are
meaningless, but are arbitrarily chosen to be 0. Joints may be described by two parameters. The
link o�set is the distance from one link to the next along the axis of the joint. The joint angle is
the rotation of one link with respect to the next about the joint axis.

To facilitate describing the location of each link we affix a coordinate frame to it — frame i is
attached to link i. Denavit and Hartenberg[1] proposed a matrix method of systematically assigning
coordinate systems to each link of an articulated chain. The axis of revolute joint i is aligned with
zi�1. The xi�1 axis is directed along the normal from zi�1 to zi and for intersecting axes is
parallel to zi�1 � zi. The link and joint parameters may be summarized as:

2Parallel link and serial/parallel hybrid structures are possible, though much less common in

industrial manipulators.

1–6

joint i−1 joint i joint i+1

link i−1

link i

T
i−1

T
iai

Xi
Yi

Zi

ai−1

Zi−1

Xi−1
Yi−1

(a) Standard form
joint i−1 joint i joint i+1

link i−1

link i

Ti−1 TiXi−1

Yi−1
Zi−1

Yi
X

i

Zi

a
i−1

ai

(b) Modified form

Figure 1: Di�erent forms of Denavit-Hartenberg notation.

link length ai the offset distance between the zi�1 and zi axes along the xi
axis;

link twist �i the angle from the zi�1 axis to the zi axis about the xi axis;
link offset di the distance from the origin of frame i�1 to the xi axis along

the zi�1 axis;
joint angle �i the angle between the xi�1 and xi axes about the zi�1 axis.

For a revolute axis �i is the joint variable and di is constant, while for a prismatic jointdi is variable,

Robotics Toolbox Release 3 1–7

7 Manipulator kinematics

and �i is constant. In many of the formulations that follow we use generalized coordinates, qi, where

qi =

�
�i for a revolute joint
di for a prismatic joint

and generalized forces

Qi =

�
�i for a revolute joint
fi for a prismatic joint

The Denavit-Hartenberg (DH) representation results in a 4x4 homogeneous transformation matrix

i�1Ai =

2
664

cos �i � sin �i cos�i sin �i sin�i ai cos �i
sin �i cos �i cos�i � cos �i sin�i ai sin �i
0 sin�i cos�i di
0 0 0 1

3
775 (1)

representing each link’s coordinate frame with respect to the previous link’s coordinate system; that
is

0Ti =
0Ti�1

i�1Ai (2)

where 0Ti is the homogeneous transformation describing the pose of coordinate frame iwith respect
to the world coordinate system 0.

Two differing methodologies have been established for assigning coordinate frames, each of which
allows some freedom in the actual coordinate frame attachment:

1. Frame i has its origin along the axis of joint i + 1, as described by Paul[2] and Lee[3, 4].

2. Frame i has its origin along the axis of joint i, and is frequently referred to as ‘modified
Denavit-Hartenberg’ (MDH) form[5]. This form is commonly used in literature dealing with
manipulator dynamics. The link transform matrix for this form differs from (1).

Figure 1 shows the notational differences between the two forms. Note that ai is always the length
of link i, but is the displacement between the origins of frame i and frame i+ 1 in one convention,
and frame i � 1 and frame i in the other3. The Toolbox provides kinematic functions for both of
these conventions — those for modified DH parameters are prefixed by ‘m’.

3Many papers when tabulating the `modi�ed' kinematic parameters of manipulators list ai�1

and �i�1 not ai and �i.

1–8

7.1 Forward and inverse kinematics

7.1 Forward and inverse kinematics

For an n-axis rigid-link manipulator, the forward kinematic solution gives the coordinate frame,
or pose, of the last link. It is obtained by repeated application of (2)

0Tn = 0A1
1A2 � � �

n�1An (3)

= K(q) (4)

which is the product of the coordinate frame transform matrices for each link. The pose of the
end-effector has 6 degrees of freedom in Cartesian space, 3 in translation and 3 in rotation, so robot
manipulators commonly have 6 joints or degrees of freedom to allow arbitrary end-effector pose.
The overall manipulator transform0Tn is frequently written as Tn, or T6 for a 6-axis robot. The
forward kinematic solution may be computed for any manipulator, irrespective of the number of
joints or kinematic structure.

Of more use in manipulator path planning is the inverse kinematic solution

q = K�1(T) (5)

which gives the joint angles required to reach the specified end-effector position. In general this
solution is non-unique, and for some classes of manipulator no closed-form solution exists. If the
manipulator has more than 6 joints it is said to be redundant and the solution for joint angles
is under-determined. If no solution can be determined for a particular manipulator pose that
configuration is said to be singular. The singularity may be due to an alignment of axes reducing
the effective degrees of freedom, or the point T being out of reach.

The manipulator Jacobian matrix, J� , transforms velocities in joint space to velocities of the end-
effector in Cartesian space. For an n-axis manipulator the end-effector Cartesian velocity is

0 _xn = 0J� _q (6)

tn _xn = tnJ� _q (7)

in base or end-effector coordinates respectively and where x is the Cartesian velocity represented
by a 6-vector. For a 6-axis manipulator the Jacobian is square and provided it is not singular can
be inverted to solve for joint rates in terms of end-effector Cartesian rates. The Jacobian will not be
invertible at a kinematic singularity, and in practice will be poorly conditioned in the vicinity of the
singularity, resulting in high joint rates. A control scheme based on Cartesian rate control

_q = 0J�1�
0 _xn (8)

was proposed by Whitney[6] and is known as resolved rate motion control. For two frames A
and B related by ATB = [n o a p] the Cartesian velocity in frame A may be transformed to
frame B by

B _x = BJA
A _x (9)

Robotics Toolbox Release 3 1–9

8 Manipulator rigid-body dynamics

where the Jacobian is given by Paul[7] as

BJA = f(ATB) =

�
[n o a]T [p� n p� o p� a]T

0 [n o a]T

�
(10)

8 Manipulator rigid-body dynamics

Manipulator dynamics is concerned with the equations of motion, the way in which the manipulator
moves in response to torques applied by the actuators, or external forces. The history and math-
ematics of the dynamics of serial-link manipulators is well covered by Paul[2] and Hollerbach[8].
There are two problems related to manipulator dynamics that are important to solve:

� inverse dynamics in which the manipulator’s equations of motion are solved for given
motion to determine the generalized forces, discussed further in Section ??, and

� direct dynamics in which the equations of motion are integrated to determine the gener-
alized coordinate response to applied generalized forces discussed further in Section 8.2.

The equations of motion for an n-axis manipulator are given by

Q =M(q)�q +C(q; _q) _q + F(_q) +G(q) (11)

where

q is the vector of generalized joint coordinates describing the pose of the manipulator

_q is the vector of joint velocities;

�q is the vector of joint accelerations

M is the symmetric joint-space inertia matrix, or manipulator inertia tensor
C describes Coriolis and centripetal effects — Centripetal torques are proportional to _q2i , while the

Coriolis torques are proportional to _qi _qj
F describes viscous and Coulomb friction and is not generally considered part of the rigid-body

dynamics
G is the gravity loading
Q is the vector of generalized forces associated with the generalized coordinates q.

The equations may be derived via a number of techniques, including Lagrangian (energy based),
Newton-Euler, d’Alembert[3, 9] or Kane’s[10] method. The earliest reported work was by Uicker[11]
and Kahn[12] using the Lagrangian approach. Due to the enormous computational cost, O(n4),
of this approach it was not possible to compute manipulator torque for real-time control. To
achieve real-time performance many approaches were suggested, including table lookup[13] and
approximation[14, 15]. The most common approximation was to ignore the velocity-dependent term
C, since accurate positioning and high speed motion are exclusive in typical robot applications.

1–10

8.1 Recursive Newton-Euler formulation

Method Multiplications Additions For N=6
Multiply Add

Lagrangian[19] 321
2
n4 + 86 5

12
n3 25n4 + 661

3
n3 66,271 51,548

+1711
4
n2 + 531

3
n +1291

2
n2 + 421

3
n

�128 �96
Recursive NE[19] 150n� 48 131n� 48 852 738
Kane[10] 646 394
Simplified RNE[22] 224 174

Table 1: Comparison of computational costs for inverse dynamics from various

sources. The last entry is achieved by symbolic simpli�cation using the software

package ARM.

Orin et al.[16] proposed an alternative approach based on the Newton-Euler (NE) equations of
rigid-body motion applied to each link. Armstrong[17] then showed how recursion might be applied
resulting in O(n) complexity. Luh et al.[18] provided a recursive formulation of the Newton-Euler
equations with linear and angular velocities referred to link coordinate frames. They suggested a
time improvement from7:9s for the Lagrangian formulation to4:5ms, and thus it became practical
to implement ‘on-line’. Hollerbach[19] showed how recursion could be applied to the Lagrangian
form, and reduced the computation to within a factor of 3 of the recursive NE. Silver[20] showed
the equivalence of the recursive Lagrangian and Newton-Euler forms, and that the difference in
efficiency is due to the representation of angular velocity.

“Kane’s equations” [10] provide another methodology for deriving the equations of motion for a
specific manipulator. A number of ‘Z’ variables are introduced, which while not necessarily of
physical significance, lead to a dynamics formulation with low computational burden. Wampler[21]
discusses the computational costs of Kane’s method in some detail.

The NE and Lagrange forms can be written generally in terms of the Denavit-Hartenberg param-
eters — however the specific formulations, such as Kane’s, can have lower computational cost for
the specific manipulator. Whilst the recursive forms are computationally more efficient, the non-
recursive forms compute the individual dynamic terms (M, C and G) directly. A comparison of
computation costs is given in Table 1.

8.1 Recursive Newton-Euler formulation

The recursive Newton-Euler (RNE) formulation[18] computes the inverse manipulator dynamics,
that is, the joint torques required for a given set of joint angles, velocities and accelerations. The
forward recursion propagates kinematic information — such as angular velocities, angular acceler-

Robotics Toolbox Release 3 1–11

8 Manipulator rigid-body dynamics

joint i−1 joint i joint i+1

link i−1

link i

T
i−1

T
iai

Xi
Yi

Zi

ai−1

Zi−1

Xi−1
Yi−1

p* vi
.
vi

.ωiωi

n fi i

N F
i i

vi

.
vi

_ _
i+1 i+1

n f

si

Figure 2: Notation used for inverse dynamics, based on standard Denavit-Hartenberg

notation.

ations, linear accelerations — from the base reference frame (inertial frame) to the end-effector. The
backward recursion propagates the forces and moments exerted on each link from the end-effector
of the manipulator to the base reference frame4. Figure 2 shows the variables involved in the
computation for one link.

The notation of Hollerbach[19] and Walker and Orin [23] will be used in which the left superscript
indicates the reference coordinate frame for the variable. The notation of Luh et al.[18] and later
Lee[4, 3] is considerably less clear.

Outward recursion, 1 � i � n.

If axis i + 1 is rotational

i+1!i+1 = i+1Ri

�
i!i + z0 _qi+1

�
(12)

i+1 _!i+1 = i+1Ri

n
i _!i + z0�qi+1 +

i!i �
�
z0 _qi+1

�o
(13)

i+1vi+1 = i+1!i+1 �
i+1p�

i+1
+ i+1Ri

ivi (14)

i+1 _vi+1 = i+1 _!i+1 �
i+1p�

i+1
+ i+1!i+1 �

n
i+1!i+1 �

i+1p�
i+1

o
+ i+1Ri

i _vi (15)

If axis i + 1 is translational
i+1!i+1 = i+1Ri

i!i (16)

4It should be noted that using MDH notation with its di�erent axis assignment conventions the

Newton Euler formulation is expressed di�erently[5].

1–12

8.1 Recursive Newton-Euler formulation

i+1 _!i+1 = i+1Ri
i _!i (17)

i+1vi+1 = i+1Ri

�
z0 _qi+1 +

ivi

�
+ i+1!i+1 �

i+1p�
i+1

(18)

i+1 _vi+1 = i+1Ri

�
z
0
�q
i+1

+ i _vi

�
+ i+1 _!i+1 �

i+1p�
i+1

+ 2 i+1!i+1 �
�
i+1Riz0 _qi+1

�
+i+1!i+1 �

�
i+1!i+1 �

i+1p�
i+1

�
(19)

i _vi = i _!i � si +
i!i �

�
i!i � si

	
+ i _vi (20)

iF i = mi
i _vi (21)

iN i = Ji
i _!i +

i!i �
�
Ji

i!i
�

(22)

Inward recursion, n � i � 1.

if
i

= iRi+1
i+1f

i+1
+ iF i (23)

ini = iRi+1

n
i+1ni+1 +

�
i+1Ri

ip�
i

�
� ii+1f

i+1

o
+
�
ip�
i
+ si

�
� iF i +

iN i(24)

Q
i

=

8<
:

�
ini
�T �iRi+1z0

�
if link i + 1 is rotational�

if
i

�T �
iRi+1z0

�
if link i + 1 is translational

(25)

where

i is the link index, in the range 1 to n
Ji is the moment of inertia of link i about its COM
si is the position vector of the COM of link i with respect to frame i
!i is the angular velocity of link i
_!i is the angular acceleration of link i
vi is the linear velocity of frame i
_vi is the linear acceleration of frame i
vi is the linear velocity of the COM of link i
_vi is the linear acceleration of the COM of link i
ni is the moment exerted on link i by link i� 1
f
i

is the force exerted on link i by link i � 1

N i is the total moment at the COM of link i
F i is the total force at the COM of link i
Q
i

is the force or torque exerted by the actuator at joint i

Robotics Toolbox Release 3 1–13

8 Manipulator rigid-body dynamics

i�1Ri is the orthonormal rotation matrix defining frame i orientation with respect to frame i � 1.
It is the upper 3� 3 portion of the link transform matrix given in (1).

i�1Ri =

2
4 cos �i � cos�i sin �i sin�i sin �i

sin �i cos�i cos �i � sin�i cos �i
0 sin�i cos�i

3
5 (26)

iRi�1 = (i�1Ri)
�1 = (i�1Ri)

T (27)

ip�
i

is the displacement from the origin of frame i � 1 to frame i with respect to frame i.

ip�
i
=

2
4 ai

di sin�i
di cos�i

3
5 (28)

It is the negative translational part of (i�1Ai)
�1.

z0 is a unit vector in Z direction, z0 = [0 0 1]

Note that the COM linear velocity given by equation (14) or (18) does not need to be computed since
no other expression depends upon it. Boundary conditions are used to introduce the effect of gravity
by setting the acceleration of the base link

_v0 = �g (29)

where g is the gravity vector in the reference coordinate frame, generally acting in the negative Z
direction, downward. Base velocity is generally zero

v0 = 0 (30)

!0 = 0 (31)

_!0 = 0 (32)

At this stage the Toolbox only provides an implementation of this algorithm using the standard
Denavit-Hartenberg conventions.

8.2 Direct dynamics

Equation (11) may be used to compute the so-called inverse dynamics, that is, actuator torque as a
function of manipulator state and is useful for on-line control. For simulation the direct, integral or
forward dynamic formulation is required giving joint motion in terms of input torques.

1–14

8.3 Rigid-body inertial parameters

Walker and Orin[23] describe several methods for computing the forward dynamics, and all make
use of an existing inverse dynamics solution. Using the RNE algorithm for inverse dynamics,
the computational complexity of the forward dynamics using ‘Method 1’ is O(n3) for an n-axis
manipulator. Their other methods are increasingly more sophisticated but reduce the computational
cost, though still O(n3). Featherstone[24] has described the “articulated-body method” for O(n)
computation of forward dynamics, however for n < 9 it is more expensive than the approach of
Walker and Orin. AnotherO(n) approach for forward dynamics has been described by Lathrop[25].

8.3 Rigid-body inertial parameters

Accurate model-based dynamic control of a manipulator requires knowledge of the rigid-body inertial
parameters. Each link has ten independent inertial parameters:

� link mass, mi;

� three first moments, which may be expressed as the COM location, si, with respect to some
datum on the link or as a moment Si = misi;

� six second moments, which represent the inertia of the link about a given axis, typically
through the COM. The second moments may be expressed in matrix or tensor form as

J =

2
4 Jxx Jxy Jxz

Jxy Jyy Jyz
Jxz Jyz Jzz

3
5 (33)

where the diagonal elements are the moments of inertia, and the off-diagonals are prod-
ucts of inertia. Only six of these nine elements are unique: three moments and three
products of inertia.

For any point in a rigid-body there is one set of axes known as the principal axes of

inertia for which the off-diagonal terms, or products, are zero. These axes are given by
the eigenvectors of the inertia matrix (33) and the eigenvalues are the principal moments of
inertia. Frequently the products of inertia of the robot links are zero due to symmetry.

A 6-axis manipulator rigid-body dynamic model thus entails 60 inertial parameters. There may be
additional parameters per joint due to friction and motor armature inertia. Clearly, establishing
numeric values for this number of parameters is a difficult task. Many parameters cannot be
measured without dismantling the robot and performing careful experiments, though this approach
was used by Armstrong et al.[26]. Most parameters could be derived from CAD models of the robots,
but this information is often considered proprietary and not made available to researchers.

Robotics Toolbox Release 3 1–15

REFERENCES

References

[1] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair mechanisms based on
matrices,” Journal of Applied Mechanics, vol. 77, pp. 215–221, June 1955.

[2] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, Massachusetts: MIT Press, 1981.

[3] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics. Control, Sensing, Vision and

Intelligence. McGraw-Hill, 1987.

[4] C. S. G. Lee, “Robot arm kinematics, dynamics and control,” IEEE Computer, vol. 15,
pp. 62–80, Dec. 1982.

[5] J. J. Craig, Introduction to Robotics. Addison Wesley, second ed., 1989.

[6] D. Whitney and D. M. Gorinevskii, “The mathematics of coordinated control of prosthetic
arms and manipulators,” ASME Journal of Dynamic Systems, Measurement and

Control, vol. 20, no. 4, pp. 303–309, 1972.

[7] R. P. Paul, B. Shimano, and G. E. Mayer, “Kinematic control equations for simple manipulators,”
IEEE Trans. Syst. Man Cybern., vol. 11, pp. 449–455, June 1981.

[8] J. M. Hollerbach, “Dynamics,” in Robot Motion - Planning and Control (M. Brady, J. M.
Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Mason, eds.), pp. 51–71, MIT, 1982.

[9] C. S. G. Lee, B. Lee, and R. Nigham, “Development of the generalized D’Alembert equations of
motion for mechanical manipulators,” in Proc. 22nd CDC, (San Antonio, Texas), pp. 1205–
1210, 1983.

[10] T. Kane and D. Levinson, “The use of Kane’s dynamical equations in robotics,” Int. J. Robot.
Res., vol. 2, pp. 3–21, Fall 1983.

[11] J. Uicker,On the Dynamic Analysis of Spatial Linkages Using 4 by 4 Matrices. PhD
thesis, Dept. Mechanical Engineering and Astronautical Sciences, NorthWestern University,
1965.

[12] M. Kahn, “The near-minimum time control of open-loop articulated kinematic linkages,” Tech.
Rep. AIM-106, Stanford University, 1969.

[13] M. H. Raibert and B. K. P. Horn, “Manipulator control using the configuration space method,”
The Industrial Robot, pp. 69–73, June 1978.

[14] A. Bejczy, “Robot arm dynamics and control,” Tech. Rep. NASA-CR-136935, NASA JPL, Feb.
1974.

1–16

REFERENCES

[15] R. Paul, “Modelling, trajectory calculation and servoing of a computer controlled arm,” Tech.
Rep. AIM-177, Stanford University, Artificial Intelligence Laboratory, 1972.

[16] D. Orin, R. McGhee, M. Vukobratovic, and G. Hartoch, “Kinematics and kinetic analysis
of open-chain linkages utilizing Newton-Euler methods,” Mathematical Biosciences. An

International Journal, vol. 43, pp. 107–130, Feb. 1979.

[17] W. Armstrong, “Recursive solution to the equations of motion of an n-link manipulator,” in
Proc. 5th World Congress on Theory of Machines and Mechanisms, (Montreal),
pp. 1343–1346, July 1979.

[18] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computational scheme for mechanical
manipulators,” ASME Journal of Dynamic Systems, Measurement and Control,
vol. 102, pp. 69–76, 1980.

[19] J. Hollerbach, “A recursive Lagrangian formulation of manipulator dynamics and a com-
parative study of dynamics formulation complexity,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-10, pp. 730–736, Nov. 1980.

[20] W. M. Silver, “On the equivalance of Lagrangian and Newton-Euler dynamics for manipula-
tors,” Int. J. Robot. Res., vol. 1, pp. 60–70, Summer 1982.

[21] C. Wampler,Computer Methods in Manipulator Kinematics, Dynamics, and Con-

trol: a Comparative Study. PhD thesis, Stanford University, 1985.

[22] J. J. Murray, Computational Robot Dynamics. PhD thesis, Carnegie-Mellon University,
1984.

[23] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation of robotic mechanisms,”
ASME Journal of Dynamic Systems, Measurement and Control, vol. 104, pp. 205–
211, 1982.

[24] R. Featherstone, Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.

[25] R. Lathrop, “Constrained (closed-loop) robot simulation by local constraint propogation.,” in
Proc. IEEE Int. Conf. Robotics and Automation, pp. 689–694, 1986.

[26] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertial parameters
of the Puma 560 arm,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 1,
(Washington, USA), pp. 510–18, 1986.

Robotics Toolbox Release 3 1–17

REFERENCES

1–18

1

2
Reference

For an n-axis manipulator the following matrix naming and dimensional con-
ventions apply.

Symbol Dimensions Description
dh n� 5 manipulator kinematic description matrix
dyn n� 20 manipulator kinematic and dynamic de-

scription matrix
q 1� n joint coordinate vector
q m � n m-point joint coordinate trajectory
qd 1� n joint velocity vector
qd m � n m-point joint velocity trajectory
qdd 1� n joint acceleration vector
qdd m � n m-point joint acceleration trajectory
T 4� 4 homogeneous transform
T m � 16 m-point homogeneous transform trajectory
Q 1� 4 unit-quaternion
v 3� 1 Cartesian vector
t m � 1 time vector
d 6� 1 differential motion vector

A trajectory is represented by a matrix in which each row corresponds to one
of m time steps. For a joint coordinate, velocity or acceleration trajectory the
columns correspond to the robot axes. Things are a little more complicated
for homogeneous transform trajectories since MATLAB does not (yet) support
3-dimensional matrices. The approach used in this Toolbox is that each row is a
homogeneous transform that has been ‘flattened’ using the (:) operator. Each
row can be restored to a 4� 4 matrix by using the reshape function.

Unless indicated by ‘(modified Denavit-Hartenberg)’ all functions work with
standard Denavit-Hartenberg parameters.

Robotics Toolbox Release 3

Introduction 2

Homogeneous Transforms
eul2tr Euler angle to homogeneous transform
oa2tr orientation and approach vector to homogeneous

transform
rotx homogeneous transform for rotation about X-axis
roty homogeneous transform for rotation about Y-axis
rotz homogeneous transform for rotation about Z-axis
rpy2tr Roll/pitch/yaw angles to homogeneous transform
tr2eul homogeneous transform to Euler angles
tr2rpy homogeneous transform to roll/pitch/yaw angles

Quaternions
q2tr quaternion to homogeneous transform
qinv inverse of quaternion
qnorm normalize a quaternion
qqmul multiply (compound) quaternions
qvmul multiply vector by quaternion
qinterp interpolate quaternions
tr2q homogeneous transform�to unit-quaternion

Kinematics
dh Denavit-Hartenberg conventions
diff2tr differential motion vector to transform
fkine compute forward kinematics
ikine compute inverse kinematics
ikine560 compute inverse kinematics for Puma 560 like arm
jacob0 compute Jacobian in base coordinate frame
jacobn compute Jacobian in end-effector coordinate frame
linktrans compute a link transform homogeneous transform
mdh modified Denavit-Hartenberg conventions
mfkine compute forward kinematics (modified Denavit-

Hartenberg)
mlinktrans compute a link transform homogeneous trans-

form(modified Denavit-Hartenberg)
tr2diff homogeneous transform to differential motion vec-

tor
tr2jac homogeneous transform to Jacobian

Robotics Toolbox Release 3

Introduction 3

Dynamics
accel compute forward dynamics
cinertia compute Cartesian manipulator inertia matrix
coriolis compute centripetal/coriolis torque
dyn dynamics conventions
friction joint friction
gravload compute gravity loading
inertia compute manipulator inertia matrix
itorque compute inertia torque
mdyn dynamics conventions (modified Denavit-

Hartenberg)
mrne inverse dynamics (modified Denavit-Hartenberg)
rne inverse dynamics

Manipulator Models
puma560 Puma 560 data
puma560akb Puma 560 data (modified Denavit-Hartenberg)
stanford Stanford arm data

Trajectory Generation
ctraj Cartesian trajectory
drivepar Cartesian trajectory parameters
jtraj joint space trajectory
trinterp interpolate homogeneous transforms
ttg extract homogeneous transform from Cartesian tra-

jectory matrix

Graphics
plotbot animate robot

Other
cross vector cross product
manipblty compute manipulability
rtdemo toolbox demonstration
unit unitize a vector

Robotics Toolbox Release 3

accel 4

accel

Purpose Compute manipulator forward dynamics

Synopsis qdd = accel(dyn, q, qd, torque)

Description Returns a vector of joint accelerations that result from applying the actuator
torque to the manipulator with joint coordinates q and velocities qd.

Uses the method 1 of Walker and Orin to compute the forward dynamics. This
form is useful for simulation of manipulator dynamics, in conjunction with a
numerical integration function.

See Also rne, dyn, fdyn, ode45

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic
mechanisms. ASME Journal of Dynamic Systems, Measurement and Control,
104:205–211, 1982.

Robotics Toolbox Release 3

cinertia 5

cinertia

Purpose Compute the Cartesian manipulator inertia matrix

Synopsis cinertia(dyn, q)

Description cinertia computes the Cartesian, or operational space, inertia matrix. dyn

describes the manipulator dynamics and kinematics, and q is an n-element
vector of joint coordinates.

Algorithm The Cartesian inertia matrix is calculated from the joint-space inertia matrix
by

M(x) = J(q)�TM(q)J(q)�1

and relates Cartesian force/torque to Cartesian acceleration

F =M(x)�x

See Also inertia, dyn, rne

References O. Khatib, “A unified approach for motion and force control of robot manipu-
lators: the operational space formulation,” IEEE Trans. Robot. Autom., vol. 3,
pp. 43–53, Feb. 1987.

Robotics Toolbox Release 3

coriolis 6

coriolis

Purpose Compute the manipulator Coriolis/centripetal torque components

Synopsis tau c = coriolis(dyn, q, qd)

Description coriolis returns the joint torques due to rigid-body Coriolis and centripetal ef-
fects for the specified joint state q and velocity qd. dyn describes the manipulator
dynamics and kinematics.

If q and qd are row vectors, tau c is a row vector of joint torques. If q and qd are
matrices, each row is interpreted as a joint state vector, and tau c is a matrix
each row being the corresponding joint torques.

Algorithm Evaluated from the equations of motion, using rne, with joint acceleration and
gravitational acceleration set to zero,

� = C(q; _q) _q

Limitations If dyn includes joint friction, then friction torque will added to the rigid-body
velocity torques returned by coriolis.

See Also dyn, rne, itorque, gravload

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic
mechanisms. ASME Journal of Dynamic Systems, Measurement and Control,
104:205–211, 1982.

Robotics Toolbox Release 3

cross 7

cross

Purpose Vector cross product

Synopsis v = cross(v1, v2)

Description Returns the vector cross product v1 � v2.

Robotics Toolbox Release 3

ctraj 8

ctraj

Purpose Compute a Cartesian trajectory between two points

Synopsis TC = ctraj(T0, T1, n)

TC = ctraj(T0, T1, t)

Description ctraj returns a Cartesian trajectory (straight line motion) TC from the point
represented by homogeneous transform T0 to T1. The number of points along
the path is n or the length of the given time vector t.

Each row of TC represents one time step and is a ‘flattened’ homogeneous trans-
form which can be restored by

Ti = reshape(TC(i,:),4,4) , or
Ti = ttg(TC, i)

See Also trinterp, drivepar, transl, ttg

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

dh 9

dh

Purpose Matrix representation of manipulator kinematics

Description A dh matrix describes the kinematics of a manipulator in a general way using
the standard Denavit-Hartenberg conventions. Each row represents one link of
the manipulator and the columns are assigned according to the following table.

Column Symbol Description
1 �i link twist angle
2 Ai link length
3 �i link rotation angle
4 Di link offset distance
5 �i joint type; 0 for revolute, non-zero for prismatic

If the last column is not given, toolbox functions assume that the manipulator
is all-revolute. For an n-axis manipulator dh is an n� 4 or n� 5 matrix.

The first 5 columns of a dynmatrix contain the kinematic parameters and maybe
used anywhere that a dh kinematic matrix is required — the dynamic data is
ignored.

Lengths Ai and Di may be expressed in any unit, and this choice will flow on to
the units in which homogeneous transforms and Jacobians are represented. All
angles are in radians.

See Also dyn,puma560,stanford,mdh

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

di�2tr 10

diff2tr

Purpose Convert a differential motion vector to a homogeneous transform

Synopsis T = diff2tr(d)

Description Returns a homogeneous transform representing a differential translation and
rotation.

Algorithm For a differential motion � = [dx dy dz �x �y �z] the corresponding homogeneous
transform is

� =

2
664

0 ��z �y dx
�z 0 ��x dy
��y �x 0 dz
0 0 0 0

3
775

Note that the rotational submatrix is skew-symmetric.

See Also tr2diff

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT
Press, Cambridge, Massachusetts, 1981.

Robotics Toolbox Release 3

drivepar 11

drivepar

Purpose Compute Cartesian path drive parameters

Synopsis dp = drivepar(T0, T1)

Description drivepar returns a vector which represents the ‘difference’ between homoge-
neous transform T0 and T1. This is most frequently used in planning a Carte-
sian path between homogeneous transform T0 and T1 and dp would be passed
to trinterp.

See Also ctraj, trinterp

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

dyn 12

dyn

Purpose Matrix representation of manipulator kinematics and dynamics

Description A dyn matrix describes the kinematics and dynamics of a manipulator in a
general way using the standard Denavit-Hartenberg conventions. Each row
represents one link of the manipulator and the columns are assigned according
to the following table.

Column Symbol Description
1 � link twist angle
2 A link length
3 � link rotation angle
4 D link offset distance
5 � joint type; 0 for revolute, non-zero for prismatic
6 mass mass of the link
7 rx link COG with respect to the link coordinate frame
8 ry
9 rz

10 Ixx elements of link inertia tensor about the link COG
11 Iyy
12 Izz
13 Ixy
14 Iyz
15 Ixz
16 Jm armature inertia
17 G reduction gear ratio; joint speed/link speed
18 B viscous friction, motor referred
19 Tc+ coulomb friction (positive rotation), motor referred
20 Tc- coulomb friction (negative rotation), motor referred

For an n-axis manipulator, dyn is an n� 20 matrix. The first 5 columns of a dyn

matrix contain the kinematic parameters and maybe used anywhere that a dh

kinematic matrix is required — the dynamic data is ignored.

All angles are in radians. The choice of all other units is up to the user, and this

Robotics Toolbox Release 3

dyn 13

choice will flow on to the units in which homogeneous transforms, Jacobians,
inertias and torques are represented.

See Also dh

Robotics Toolbox Release 3

eul2tr 14

eul2tr

Purpose Convert Euler angles to a homogeneous transform

Synopsis T = eul2tr([r p y])

T = eul2tr(r,p,y)

Description eul2tr returns a homogeneous transformation for the specified Euler angles in
radians. These correspond to rotations about the Z, X, and Z axes respectively.

See Also tr2eul, rpy2tr

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

fdyn 15

fdyn

Purpose Integrate forward dynamics

Synopsis [t q qd] = fdyn(dyn, t0, t1)

[t q qd] = fdyn(dyn, t0, t1, torqfun)
[t q qd] = fdyn(dyn, t0, t1, torqfun, q0, qd0)

Description fdyn integrates the manipulator equations of motion over the time interval t0
to t1 using MATLAB’s ode45 numerical integration function. It returns a time
vector t, and matrices of manipulator joint state q and joint velocities qd. These
matrices have one row per time step and one column per joint.

Actuator torque may be specified by a user function

tau = torqfun(t, x)

where t is the current time, and x = [q; qd] is a 2n-element column vector of
manipulator joint coordinate and velocity state. Typically this would be used
to implement some axis control scheme. If torqfun is not specified then zero
torque is applied to the manipulator.

Initial joint coordinates and velocities may be specified by the optional argu-
ments q0 and qd0 respectively.

Algorithm The joint acceleration is a function of joint coordinate and velocity given by

�q =M(q)�1
�
� �C(q; _q) _q �G(q) �F(_q)

	

Example The following example shows how fdyn() can be used to simulate a robot and
its controller. The manipulator is a Puma 560 with simple proportional and
derivative controller. The simulation results are shown in the figure. Note that
very high gains are required on joints 2 and 3 due to counter the significant
disturbance torque due to gravity.

Robotics Toolbox Release 3

fdyn 16

>> puma560 % load Puma parameters

>> t = [0:.056:5]'; % time vector

>> q_dmd = jtraj(qz, qr,t); % create a path

>> qt = [t q_dmd];

>> Pgain = [50 200 50 5 5 5]; % set gains

>> Dgain = [0 0 0 0 0 0];

>> global qt Pgain Dgain

>> [tsim,q,qd] = fdyn(p560, 0, 5, 'taufunc')

and the invoked function is

%

% taufunc.m

%

% user written function to compute joint torque as a function

% of joint error. The desired path is passed in via the global

% matrix qt. The controller implemented is PD with the proportional

% and derivative gains given by the global variables Pgain and Dgain

% respectively.

%

function tau = taufunc(t, x)

global Pgain Dgain qt;

q = x(1:6)'; qd = x(7:12)'; % extract state variables

if t > qt(length(qt),1), % keep time in range

t = qt(length(qt),1);

end

% interpolate demanded angles for this time

q_dmd = interp1(qt(:,1), qt(:,2:7), t);

% compute error and joint torque

e = q_dmd - q;

tau = e * diag(Pgain) + qd * diag(Dgain)

Robotics Toolbox Release 3

fdyn 17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.01

0

0.01

Jo
in

t 1
 (

ra
d)

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

Jo
in

t 2
 (

ra
d)

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

Jo
in

t 3
 (

ra
d)

Time (s)

Results of fdyn() example. Simulated path shown as solid, and reference path as dashed.

See Also accel, rne, dyn, ode45

References M. W. Walker and D. E. Orin. E�cient dynamic computer simulation of robotic mech-

anisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205{211,

1982.

Robotics Toolbox Release 3

fkine 18

fkine

Purpose Forward robot kinematics for serial link manipulator

Synopsis T = fkine(dh, q)

Description fkine computes forward kinematics for the joint coordinate q. dh describes the manipu-

lator kinematics in standard Denavit-Hartenberg notation.

If q is a vector it is interpreted as the generalized joint coordinates, and fkine returns a

homogeneous transformation for the �nal link of the manipulator. If q is a matrix each row

is interpreted as as a joint state vector, and T is a matrix in which each row is the `
attened'

homogeneous transform for the the corresponding row in q. The `
attened' transform can

be restored by

Ti = reshape(T(i,:),4,4) , or

Ti = ttg(T, i)

See Also dh,linktran, mfkine

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,

Cambridge, Massachusetts, 1981.

Robotics Toolbox Release 3

friction 19

friction

Purpose Compute joint friction torque

Synopsis tau f = friction(dyn, qd)

Description friction computes the joint friction torque based on friction parameter data in dyn.

Friction is a function only of joint velocity qd.

Algorithm The friction model is a fairly standard one comprising viscous friction and direction depen-

dent Coulomb friction

Fi(t) =

�
Bi + ��i _q ; _� < 0

Bi + �+i _q ; _� > 0

See Also dyn,coriolis

References M. W. Walker and D. E. Orin. E�cient dynamic computer simulation of robotic mech-

anisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205{211,

1982.

Robotics Toolbox Release 3

gravload 20

gravload

Purpose Compute the manipulator gravity torque components

Synopsis tau g = gravload(dyn, q)

tau g = gravload(dyn, q, grav)

Description gravload computes the joint torque due to gravity for the manipulator in pose q.

If q is a row vector, tau g returns a row vector of joint torques. If q is a matrix each row

is interpreted as as a joint state vector, and tau g is a matrix in which each row is the

gravity torque for the the corresponding row in q.

grav allows an arbitrary gravity vector to override the default of grav = [0; 0; 9.81].

See Also dyn, rne, itorque, coriolis

References M. W. Walker and D. E. Orin. E�cient dynamic computer simulation of robotic mech-

anisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205{211,

1982.

Robotics Toolbox Release 3

ikine 21

ikine

Purpose Inverse manipulator kinematics

Synopsis q = ikine(dh, T)

q = ikine(dh, T, q0)

q = ikine(dh, T, q0, M)

Description ikine returns the joint coordinates corresponding to the end-e�ector homogeneous trans-

form T. Note that the inverse kinematic solution is generally not unique, and depends on

the initial value q0 (which defaults to 0).

If T is a homogeneous transform then a row vector of joint coordinates is returned. If T is

a homogeneous transform trajectory then q will be a matrix in which each row is the joint

coordinates for the corresponding row of T. The initial estimate of q for each time step is

taken as the solution from the previous time step. The estimate for the �rst step in q0 if

this is given else 0.

For the case of a manipulator with fewer than 6 DOF it is not possible for the end-

e�ector to satisfy the end-e�ector pose speci�ed by an arbitrary homogeneous transform.

This typically leads to non-convergence in ikine. A solution is to specify a 6-element

weighting vector, M, whose elements are 0 for those Cartesian DOF that are unconstrained

and 1 otherwise. The elements correspond to translation along the X-, Y- and Z-axes and

rotation about the X-, Y- and Z-axes. For example, a 5-axis manipulator may be incapable

of independantly controlling rotation about the end-e�ector's Z-axis. In this case M = [1

1 1 1 1 0] would enable a solution in which the end-e�ector adopted the pose T except

for the end-e�ector rotation. The number of non-zero elements should equal the number

of robot DOF.

Algorithm The solution is computed iteratively using the pseudo-inverse of the manipulator Jacobian.

Cautionary Such a solution is completely general, though much less e�cient than speci�c inverse

kinematic solutions derived symbolically.

Robotics Toolbox Release 3

ikine 22

This approach allows a solution to obtained at a singularity, but the joint coordinates

within the null space are arbitrarily assigned.

See Also fkine, tr2di�, jacob0, ikine560

References S. Chieaverini, L. Sciavicco, and B. Siciliano, \Control of robotic systems through singu-

larities," in Proc. Int. Workshop on Nonlinear and Adaptive Control: Issues in Robotics

(C. C. de Wit, ed.), Springer-Verlag, 1991.

Robotics Toolbox Release 3

ikine560 23

ikine560

Purpose Inverse manipulator kinematics for Puma 560 like arm

Synopsis q = ikine560(dh, config)

Description ikine560() returns the joint coordinates corresponding to the end-e�ector homogeneous

transform T. It is computed using a symbolic solution appropriate for Puma 560 like robots,

that is, all revolute 6DOF arms, with a spherical wrist. The use of a symbolic solution

means that it executes over 50 times faster than ikine() for a Puma 560 solution.

A further advantage is that ikine560() allows control over the speci�c solution returned.

config is a 3-element vector whose values are:

config(1) -1 or ’l’ left-handed (lefty) solution

1 or ’u’ yright-handed (righty) solution

config(2) -1 or ’u’ yelbow up solution

1 or ’d’ elbow down solution

config(3) -1 or ’f’ ywrist
ipped solution

1 or ’n’ wrist not
ipped solution

See Also fkine, ikine

References R. P. Paul and H. Zhang, \Computationally e�cient kinematics for manipulators with

spherical wrists," Int. J. Robot. Res., vol. 5, no. 2, pp. 32{44, 1986.

Author Robert Biro and Gary McMurray, Georgia Institute of Technology,

gt2231a@acmex.gatech.edu

Robotics Toolbox Release 3

inertia 24

inertia

Purpose Compute the manipulator joint-space inertia matrix

Synopsis M = inertia(dyn, q)

Description inertia computes the joint-space inertia matrix which relates joint torque to joint accel-

eration

� =M(q)�q

dyn describes the manipulator dynamics and kinematics, and q is an n-element vector of

joint state.

For an n-axis manipulator M is an n� n symmetric matrix.

Note that if the dyn contains motor inertia parameters then motor inertia, referred to the

link reference frame, will be added to the diagonal of M.

Example To show how the inertia `seen' by the waist joint varies as a function of joint angles 2 and

3 the following code could be used.

>> [q2,q3] = meshgrid(-pi:0.2:pi, -pi:0.2:pi);

>> qq = [zeros(length(q2(:)),1) q2(:) q3(:) zeros(length(q2(:)),3)];

>> I11 = [];

>> for q=qq'

>> I = inertia(p560, q');

>> I11 = [I11; I(1,1)];

>> end

>> surfl(q2, q3, reshape(I11, size(q2)));

Robotics Toolbox Release 3

inertia 25

−4
−2

0
2

4

−4

−2

0

2

4
2

2.5

3

3.5

4

4.5

5

5.5

q2q3

I1
1

See Also dyn, rne, itorque, coriolis, gravload

References M. W. Walker and D. E. Orin. E�cient dynamic computer simulation of robotic mech-

anisms. ASME Journal of Dynamic Systems, Measurement and Control, 104:205{211,

1982.

Robotics Toolbox Release 3

ishomog 26

ishomog

Purpose Test if argument is a homogeneous transformation

Synopsis ishomog(x)

Description Returns true if x is a 4 � 4 matrix.

Robotics Toolbox Release 3

itorque 27

itorque

Purpose Compute the manipulator inertia torque component

Synopsis tau i = itorque(dyn, q, qdd)

Description itorque returns the joint torque due to inertia at the speci�ed pose q and acceleration

qdd which is given by

� i =M(q)�q

If q and qdd are row vectors, itorque is a row vector of joint torques. If q and qdd are

matrices, each row is interpreted as a joint state vector, and itorque is a matrix in which

each row is the inertia torque for the corresponding rows of q and qdd.

Note that if the dyn contains motor inertia parameters then motor inertia, referred to the

link reference frame, will be added to the diagonal of M and in
uence the inertia torque

result.

See Also dyn, rne, coriolis, inertia, gravload

Robotics Toolbox Release 3

jacob0 28

jacob0

Purpose Compute manipulator Jacobian in base coordinates

Synopsis jacob0(dh, q)

Description jacob0 returns a Jacobian matrix for the current pose q expressed in the base coordinate

frame.

The manipulator Jacobian matrix, 0Jq, maps di�erential velocities in joint space to Carte-

sian velocity of the end-e�ector expressed in the base coordinate frame.

0 _x = 0
Jq(q) _q

For an n-axis manipulator the Jacobian is a 6� n matrix.

See Also jacobn, di�2tr, tr2di�, di�

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,

Cambridge, Massachusetts, 1981.

Robotics Toolbox Release 3

jacobn 29

jacobn

Purpose Compute manipulator Jacobian in end-e�ector coordinates

Synopsis jacobn(dh, q)

Description jacobn returns a Jacobian matrix for the current pose q expressed in the end-e�ector

coordinate frame.

The manipulator Jacobian matrix, 0Jq, maps di�erential velocities in joint space to Carte-

sian velocity of the end-e�ector expressed in the end-e�ector coordinate frame.

n _x = n
Jq(q) _q

For an n-axis manipulator the Jacobian is a 6� n matrix.

See Also jacob0, di�2tr, tr2di�, di�

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,

Cambridge, Massachusetts, 1981.

Robotics Toolbox Release 3

jtraj 30

jtraj

Purpose Compute a joint space trajectory between two joint coordinate poses

Synopsis [q qd qdd] = jtraj(q0, q1, n)

[q qd qdd] = jtraj(q0, q1, n, qd0, qd1)

[q qd qdd] = jtraj(q0, q1, t)

[q qd qdd] = jtraj(q0, q1, t, qd0, qd1)

Description jtraj returns a joint space trajectory q from joint coordinates q0 to q1. The number of

points is n or the length of the given time vector t. A 7th order polynomial is used with

default zero boundary conditions for velocity and acceleration.

Non-zero boundary velocities can be optionally speci�ed as qd0 and qd1.

The trajectory is a matrix, with one row per time step, and one column per joint. The

function can optionally return a velocity and acceleration trajectories as qd and qdd re-

spectively.

Robotics Toolbox Release 3

linktran 31

linktran

Purpose Compute the link transform from kinematic parameters

Synopsis T = linktran(alpha, a, theta, d)

T = linktran(dh, q)

Description linktrans computes the homogeneous transform between adjacent link coordinate frames

based on the standard Denavit-Hartenberg parameters.

In the second case, q is substituted on a row-by-row basis for �i or Di according to �i.

Algorithm The homogeneous transform

i�1
Ai =

2
664

cos �i � sin �i cos�i sin �i sin �i ai cos �i

sin �i cos �i cos�i � cos �i sin�i ai sin �i

0 sin �i cos�i di

0 0 0 1

3
775

represents each link's coordinate frame with respect to the previous link's coordinate sys-

tem.

See Also mlinktran

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,

Cambridge, Massachusetts, 1981.

Robotics Toolbox Release 3

maniplty 32

maniplty

Purpose Manipulability measure

Synopsis m = maniplty(dh, q)

m = maniplty(dyn, q)

Description maniplty computes the scalar manipulability index for the manipulator at the given pose.

Manipulability varies from 0 (bad) to 1 (good). The �rst case, based purely on kinematic

data, returns Yoshikawa's manipulability measure which gives an indication of how `far'

the manipulator is from singularities and thus able to move and exert forces uniformly

in all directions. The second case, utilizing manipulator dynamic data, returns Asada's

manipulability measure which is based on how close the inertia ellipsoid is to spherical.

If q is a vector maniplty returns a scalar manipulability index. If q is a matrix maniplty

returns a column vector and each row is the manipulability index for the pose speci�ed by

the corresponding row of q.

Algorithm Yoshikawa's measure is based on the condition number of the manipulator Jacobian

�yoshi =
q
jJ(q)J(q)0j

Asada's measure is computed from the Cartesian inertia matrix

M(x) = J(q)�TM(q)J(q)�1

The Cartesian manipulator inertia ellipsoid is

x0M(x)x = 1

and gives an indication of how well the manipulator can accelerate in each of the Cartesian

directions. The scalar measure computed here is the ratio of the smallest/largest ellipsoid

axes

�asada =
min x

max x
Ideally the ellipsoid would be spherical, giving a ratio of 1, but in practice will be less than

1.

Robotics Toolbox Release 3

maniplty 33

See Also jacob0, inertia

References T. Yoshikawa, \Analysis and control of robot manipulators with redundancy," in Proc. 1st

Int. Symp. Robotics Research, (Bretton Woods, NH), pp. 735{747, 1983.

Robotics Toolbox Release 3

mdh 34

mdh

Purpose Matrix representation of manipulator kinematics (modi�ed DH parameters)

Description A mdh matrix describes the kinematics of a manipulator in a general way using the modi�ed

Denavit-Hartenberg conventions. Each row represents one link of the manipulator and the

columns are assigned according to the following table.

Column Symbol Description

1 �i�1 link twist angle

2 Ai�1 link length

3 �i link rotation angle

4 Di link o�set distance

5 �i joint type; 0 for revolute, non-zero for prismatic

If the last column is not given, toolbox functions assume that the manipulator is all-revolute.

For an n-axis manipulator mdh is an n� 4 or n� 5 matrix.

The �rst 5 columns of a dyn matrix contain the kinematic parameters and maybe used

anywhere that a mdh kinematic matrix is required | the dynamic data is ignored.

See Also mfkine,mrne,dh,puma560akb

References J. J. Craig, Introduction to Robotics. Addison Wesley, second ed., 1989.

Robotics Toolbox Release 3

mdyn 35

mdyn

Purpose Matrix representation of manipulator kinematics and dynamics (modi�ed DH parameters)

Description A mdyn matrix describes the kinematics and dynamics of a manipulator in a general way

using the modi�ed Denavit-Hartenberg conventions. Each row represents one link of the

manipulator and the columns are assigned according to the following table.

Column Symbol Description

1 �i�1 link twist angle

2 Ai�1 link length

3 �i link rotation angle

4 Di link o�set distance

5 � joint type; 0 for revolute, non-zero for prismatic

6 mass mass of the link

7 rx link COG with respect to the link coordinate frame

8 ry

9 rz

10 Ixx elements of link inertia tensor about the link COG

11 Iyy

12 Izz

13 Ixy

14 Iyz

15 Ixz

16 Jm armature inertia

17 G reduction gear ratio; joint speed/link speed

18 B viscous friction, motor referred

19 Tc+ coulomb friction (positive rotation), motor referred

20 Tc- coulomb friction (negative rotation), motor referred

For an n-axis manipulator, mdyn is an n�20 matrix. The �rst 5 columns of a mdyn matrix

contain the kinematic parameters and maybe used anywhere that a mdh kinematic matrix

is required | the dynamic data is ignored.

Robotics Toolbox Release 3

mdyn 36

All angles are in radians. The choice of all other units is up to the user, and this choice

will
ow on to the units in which homogeneous transforms, Jacobians, inertias and torques

are represented.

See Also mdh

Robotics Toolbox Release 3

mfkine 37

mfkine

Purpose Forward robot kinematics for serial link manipulator (modi�ed DH parameters)

Synopsis T = mfkine(mdh, q)

Description mfkine computes the forward kinematics the joint state q. dh describes the manipulator

kinematics in modi�ed Denavit-Hartenberg notation.

If q is a vector it is interpreted as the generalized joint coordinates, and mfkine returns a

homogeneous transformation for the �nal link of the manipulator. If q is a matrix each row

is interpreted as as a joint state vector, and T is a matrix in which each row is the `
attened'

homogeneous transform for the the corresponding row in q. The `
attened' transform can

be restored by

Ti = reshape(TC(i,:),4,4) , or

Ti = ttg(TC, i)

See Also mdh,mlinktran, fkine

References J. J. Craig. Introduction to Robotics. Addison Wesley, second edition, 1989.

Robotics Toolbox Release 3

mlinktran 38

mlinktran

Purpose Compute a link transformation from kinematic parameters (modi�ed DH parameters)

Synopsis T = mlinktran(alpha, an, theta, dn)

T = mlinktran(mdh, q)

Description mlinktrans computes the homogeneous transform between adjacent link coordinate

frames based on the modi�ed Denavit-Hartenberg parameters.

In the second case, q is substituted on a row-by-row basis for �i or Di according to �i.

Algorithm The homogeneous transform

i�1
Ai =

2
664

cos �i � sin �i 0 ai�1

sin �i cos�i�1 cos �i cos�i�1 � sin�i�1 �di sin �i�1

sin �i sin�i�1 cos �i sin�i�1 cos�i�1 di cos�i�1

0 0 0 1

3
775

represents each link's coordinate frame with respect to the previous link's coordinate sys-

tem.

See Also mdh, mfkine, linktrans

References J. J. Craig. Introduction to Robotics. Addison Wesley, second edition, 1989.

Robotics Toolbox Release 3

mrne 39

mrne

Purpose Compute inverse dynamics via recursive Newton-Euler formulation (modi�ed DH parame-

ters)

Synopsis tau = mrne(mdyn, q, qd, qdd)

tau = mrne(mdyn, [q qd qdd])

tau = mrne(mdyn, q, qd, qdd, grav)

tau = mrne(mdyn, [q qd qdd], grav)

tau = mrne(mdyn, q, qd, qdd, grav, fext)

tau = mrne(mdyn, [q qd qdd], grav, fext)

Description mrne computes the equations of motion in an e�cient manner, giving joint torque as a

function of joint position, velocity and acceleration.

If q, qd and qdd are row vectors then tau is a row vector of joint torques. If q, qd

and qdd are matrices then tau is a matrix in which each row is the joint torque for the

corresponding rows of q, qd and qdd.

Gravity by default acts in the �Z direction, grav = [0 0 9.81]m=s2 , but may be over-

ridden by providing a gravity acceleration vector grav = [gx gy gz].

An external force/moment acting on the end of the manipulator may also be speci�ed by a

6-element vector fext = [Fx Fy Fz Mx My Mz] in the end-e�ector coordinate frame.

The torque computed may contain contributions due to armature inertia and joint friction

if these are speci�ed in the parameter matrix mdyn.

Algorithm Computes the joint torque

� =M(q)�q +C(q; _q) _q + F(_q) +G(q)

whereM is the manipulator inertia matrix, C is the Coriolis and centripetal torque, F the

viscous and Coulomb friction, and G the gravity load.

Robotics Toolbox Release 3

mrne 40

Limitations This function is experimental and hasn't been extensively tested. The user should apply

sanity checks to the results. Would be faster as a MEX �le.

See Also dyn, fdyn, accel, gravload, inertia

Limitations A MEX �le is currently only available for Sparc architecture.

References J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-line computational scheme for

mechanical manipulators. ASME Journal of Dynamic Systems, Measurement and Control,

102:69{76, 1980.

Robotics Toolbox Release 3

oa2tr 41

oa2tr

Purpose Convert OA vectors to homogeneous transform

Synopsis oa2tr(o, a)

Description oa2tr returns a rotational homogeneous transformation speci�ed in terms of the Cartesian

orientation and approach vectors o and a respectively.

Algorithm

T =

�
ô� â ô â 0

0 0 0 1

�
where ô and â are unit vectors corresponding to o and a respectively.

See Also rpy2tr, eul2tr

Robotics Toolbox Release 3

plotbot 42

plotbot

Purpose Graphical robot animation

Synopsis plotbot(dh, q)

plotbot(dh, q, opt)

Description plotbot displays a graphical representation of the robot given the kinematics information

in dh. The robot is represented by a simple stick �gure where line segments join the origins

of the link coordinate frames. If q is a matrix representing a joint-space trajectory then an

animation of the robot motion is shown.

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

0.5

1

1.5

XY

Z

The wrist coordinate frame is shown by 3 short orthogonal line segments which are colored:

red (X or normal), green (Y or orientation) and blue (Z or approach).

Robotics Toolbox Release 3

plotbot 43

Options are speci�ed by opt which is a string which can contain one or more of the following

keys:

l leave trail, that is, don't erase the robot from the previous time step

w don't draw the wrist axis coordinate frame

r repeat mode, run the animation 50 times

bvalue set the base of the robot at coordinate [0 0 value] in the 3D plot

See Also fkine, dh

Robotics Toolbox Release 3

puma560 44

puma560

Purpose Load kinematic and dynamic data for a Puma 560 manipulator

Synopsis puma560

Description De�nes the matrix p560 which describes the kinematic and dynamic characteristics of a

Unimation Puma 560 manipulator. The kinematic conventions used are as per Paul and

Zhang, and all quantities are in standard SI units.

Also de�nes the joint coordinate vectors qz, qr and qstretch corresponding to the zero-

angle, ready and fully extended poses.

Details of coordinate frames used for the Puma 560 shown here in its zero angle pose.

See Also dh, dyn, stanford

Robotics Toolbox Release 3

puma560 45

References R. P. Paul and H. Zhang, \Computationally e�cient kinematics for manipulators with

spherical wrists," Int. J. Robot. Res., vol. 5, no. 2, pp. 32{44, 1986.

P. Corke and B. Armstrong-H�elouvry, \A search for consensus among model parameters

reported for the PUMA 560 robot," in Proc. IEEE Int. Conf. Robotics and Automation,

(San Diego), pp. 1608{1613, May 1994.

P. Corke and B. Armstrong-H�elouvry, \A meta-study of PUMA 560 dynamics: A critical

appraisal of literature data," Robotica, vol. 13, no. 3, pp. 253{258, 1995.

See Also puma560akb

Robotics Toolbox Release 3

puma560akb 46

puma560akb

Purpose Load kinematic and dynamic data for a Puma 560 manipulator

Synopsis puma560akb

Description De�nes the matrix p560akb which describes the kinematic and dynamic characteristics

of a Unimation Puma 560 manipulator. Craig's modi�ed Denavit-Hartenberg notation is

used, with the particular kinematic conventions from Armstrong, Khatib and Burdick. All

quantities are in standard SI units.

Also de�nes the joint coordinate vectors qz, qr and qstretch corresponding to the zero-

angle, ready and fully extended poses.

See Also dh, dyn, stanford

References B. Armstrong, O. Khatib, and J. Burdick, \The explicit dynamic model and inertial

parameters of the Puma 560 arm," in Proc. IEEE Int. Conf. Robotics and Automation,

vol. 1, (Washington, USA), pp. 510{18, 1986.

Robotics Toolbox Release 3

q2tr 47

q2tr

Purpose Convert unit-quaternion to a homogeneous transform

Synopsis T = q2tr(Q)

Description Return the rotational homogeneous transform corresponding to the unit quaternion Q.

See Also tr2q

References K. Shoemake, \Animating rotation with quaternion curves.," in Proceedings of ACM SIG-

GRAPH, (San Francisco), pp. 245{254, The Singer Company, Link Flight Simulator Divi-

sion, 1985.

Robotics Toolbox Release 3

qinterp 48

qinterp

Purpose Interpolate unit-quaternions

Synopsis QI = qinterp(Q1, Q2, r)

Description Return a unit-quaternion that interpolates between Q1 and Q2 as r varies between 0 and

1 inclusively. This is a spherical linear interpolation (slerp) that can be interpreted as

interpolation along a great circle arc on a sphere.

References K. Shoemake, \Animating rotation with quaternion curves.," in Proceedings of ACM SIG-

GRAPH, (San Francisco), pp. 245{254, The Singer Company, Link Flight Simulator Divi-

sion, 1985.

Robotics Toolbox Release 3

qinv 49

qinv

Purpose Inverse of unit-quaternion

Synopsis QI = qinv(Q)

Description Return the inverse of the unit-quaternion Q. The inverse is de�ned such that

qq�1 = 1

See Also qqmul,qvmul

References K. Shoemake, \Animating rotation with quaternion curves.," in Proceedings of ACM SIG-

GRAPH, (San Francisco), pp. 245{254, The Singer Company, Link Flight Simulator Divi-

sion, 1985.

Robotics Toolbox Release 3

qnorm 50

qnorm

Purpose Normalize a quaternion

Synopsis QN = qnorm(Q)

Description Return a unit-quaternion corresponding to the quaternion Q.

Robotics Toolbox Release 3

qqmul 51

qqmul

Purpose Multiply quaternions

Synopsis Q = qqmul(Q1, Q2)

Description Return the product of quaternions, that is, compound the rotations they each represent.

See Also qvmul,qinv

References K. Shoemake, \Animating rotation with quaternion curves.," in Proceedings of ACM SIG-

GRAPH, (San Francisco), pp. 245{254, The Singer Company, Link Flight Simulator Divi-

sion, 1985.

Robotics Toolbox Release 3

qvmul 52

qvmul

Purpose Rotate a vector by a unit-quaternion

Synopsis VQ = qvmul(Q, V)

Description Return a Cartesian vector corresponding to the vector V rotated by the unit-quaternion Q.

Algorithm
qn =

q

jjqjj

See Also qqmul

References K. Shoemake, \Animating rotation with quaternion curves.," in Proceedings of ACM SIG-

GRAPH, (San Francisco), pp. 245{254, The Singer Company, Link Flight Simulator Divi-

sion, 1985.

Robotics Toolbox Release 3

rne 53

rne

Purpose Compute inverse dynamics via recursive Newton-Euler formulation

Synopsis tau = rne(dyn, q, qd, qdd)

tau = rne(dyn, [q qd qdd])

tau = rne(dyn, q, qd, qdd, grav)

tau = rne(dyn, [q qd qdd], grav)

tau = rne(dyn, q, qd, qdd, grav, fext)

tau = rne(dyn, [q qd qdd], grav, fext)

Description rne computes the equations of motion in an e�cient manner, giving joint torque as a

function of joint position, velocity and acceleration.

If q, qd and qdd are row vectors then tau is a row vector of joint torques. If q, qd

and qdd are matrices then tau is a matrix in which each row is the joint torque for the

corresponding rows of q, qd and qdd.

Gravity by default acts in the �Z direction, grav = [0 0 9.81]m=s2 , but may be over-

ridden by providing a gravity acceleration vector grav = [gx gy gz].

An external force/moment acting on the end of the manipulator may also be speci�ed by a

6-element vector fext = [Fx Fy Fz Mx My Mz] in the end-e�ector coordinate frame.

The torque computed may contain contributions due to armature inertia and joint friction

if these are speci�ed in the parameter matrix dyn.

The MEX �le version of this function is around 300 times faster than the M �le.

Algorithm Coumputes the joint torque

� =M(q)�q +C(q; _q) _q + F(_q) +G(q)

whereM is the manipulator inertia matrix, C is the Coriolis and centripetal torque, F the

viscous and Coulomb friction, and G the gravity load.

Robotics Toolbox Release 3

rne 54

See Also dyn, fdyn, accel, gravload, inertia

Limitations A MEX �le is currently only available for Sparc architecture.

References J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-line computational scheme for

mechanical manipulators. ASME Journal of Dynamic Systems, Measurement and Control,

102:69{76, 1980.

Robotics Toolbox Release 3

rotvec 55

rotvec

Purpose Rotation about a vector

Synopsis T = rotvec(v, theta)

Description rotvec returns a homogeneous transformation representing a rotation of theta radians

about the vector v.

See Also rotx, roty, rotz

Robotics Toolbox Release 3

rotx,roty,rotz 56

rotx,roty,rotz

Purpose Rotation about X, Y or Z axis

Synopsis T = rotx(theta)

T = roty(theta)

T = rotz(theta)

Description Return a homogeneous transformation representing a rotation of theta radians about the

X, Y or Z axes.

See Also rotvec

Robotics Toolbox Release 3

rpy2tr 57

rpy2tr

Purpose Roll/pitch/yaw angles to homogeneous transform

Synopsis T = rpy2tr([r p y])

T = rpy2tr(r,p,y)

Description rpy2tr returns a homogeneous transformation for the speci�ed roll/pitch/yaw angles in

radians. These correspond to rotations about the Z, X, Y axes respectively.

See Also tr2rpy, eul2tr

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

rtdemo 58

rtdemo

Purpose Robot Toolbox demonstration

Synopsis rtdemo

Description This script provides demonstrations for most functions within the Robotics Toolbox.

Robotics Toolbox Release 3

stanford 59

stanford

Purpose Load kinematic and dynamic data for a Stanford manipulator

Synopsis stanford

Description De�nes the matrix stan which describes the kinematic and dynamic characteristics of a

Stanford manipulator. Speci�es armature inertia and gear ratios. All quantities are in

standard SI units.

See Also dh, dyn, stanford

References R. Paul, \Modeling, trajectory calculation and servoing of a computer controlled arm,"

Tech. Rep. AIM-177, Stanford University, Arti�cial Intelligence Laboratory, 1972.

R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

tr2di� 60

tr2diff

Purpose Convert a homogeneous transform to a di�erential motion vector

Synopsis d = tr2diff(T)

d = tr2diff(T1, T2)

Description The �rst form of tr2diff returns a 6-element di�erential motion vector representing

the incremental translation and rotation described by the homogeneous transform T. It is

assumed that T is of the form 2
664

0 ��z �y dx

�z 0 ��x dy

��y �x 0 dz

0 0 0 0

3
775

The translational elements of d are assigned directly. The rotational elements are computed

from the mean of the two values that appear in the skew-symmetric matrix.

The second form of tr2diff returns a 6-element di�erential motion vector representing

the displacement from T1 to T2, that is, T2 - T1.

d =

"
p
2
� p

1

1=2 (n
1 � n2 + o1 � o2 + a1 � a2)

#

See Also di�2tr, di�

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

tr2eul 61

tr2eul

Purpose Convert a homogeneous transform to Euler angles

Synopsis [a b c] = tr2eul(T)

Description tr2eul returns a vector of Euler angles, in radians, corresponding to the rotational part

of the homogeneous transform T.

See Also eul2tr, tr2rpy

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

tr2jac 62

tr2jac

Purpose Compute a Jacobian to map di�erential motion between frames

Synopsis jac = tr2jac(T)

Description tr2jac returns a 6� 6 Jacobian matrix to map di�erential motions or velocities between

frames related by the homogeneous transform T.

If T represents a homogeneous transformation from frame A to frame B, ATB, then

B _x = B
JA

A _x

where B
JA is given by tr2jac(T).

See Also tr2di�, di�2tr, di�

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

tr2q 63

tr2q

Purpose Convert homogeneous transform to a unit-quaternion

Synopsis Q = tr2q(T)

Description Return a unit quaternion corresponding to the rotational part of the homogeneous trans-

form T.

See Also q2tr

References J. Funda, \Quaternions and homogeneous transforms in robotics," Master's thesis, Univer-

sity of Pennsylvania, Apr. 1988.

Robotics Toolbox Release 3

tr2rpy 64

tr2rpy

Purpose Convert a homogeneous transform to roll/pitch/yaw angles

Synopsis [a b c] = tr2rpy(T)

Description tr2rpy returns a vector of roll/pitch/yaw angles, in radians, corresponding to the rota-

tional part of the homogeneous transform T.

See Also rpy2tr, tr2eul

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

transl 65

transl

Purpose Translational transformation

Synopsis T = transl(x, y, z)

T = transl(v)

v = transl(T) xyz = transl(TC)

Description transl returns a homogeneous transformation representing a translation expressed as

three scalar x, y and z, or a Cartesian vector v.

The third form returns the translational part of a homogeneous transform as a 3-element

column vector.

The fourth form returns a matrix whose columns are the X, Y and Z columns of the

Cartesian trajectory matrix TC.

See Also ctraj, rotx, roty, rotz, rotvec

Robotics Toolbox Release 3

trinterp 66

trinterp

Purpose Interpolate homogeneous transforms

Synopsis T = trinterp(T0, T1, r)

T = trinterp(T0, dp, r)

Description trinterp interpolates between the two homogeneous transforms T0 and T1 as r varies

between 0 and 1 inclusively. This is generally used for computing straight line or `Cartesian'

motion.

The second form uses a drive parameter matrix computed by drivepar which represents

the `di�erence' between T0 and T1 and may be more e�cient when computing many inter-

polated points between the same two endpoints.

See Also ctraj, drivepar

References R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge,

Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 3

trnorm 67

trnorm

Purpose Normalize a homogeneous transformation

Synopsis TN = trnorm(T)

Description Returns a normalized copy of the homogeneous transformation T. Finite word length arith-

metic can lead to homogeneous transformations in which the rotational submatrix is not

orthogonal, that is, det(R) 6= �1.

Algorithm Normalization is performed by orthogonalizing the rotation submatrix n = o� a.

See Also di�2tr, di�

References J. Funda, \Quaternions and homogeneous transforms in robotics," Master's thesis, Univer-

sity of Pennsylvania, Apr. 1988.

Robotics Toolbox Release 3

ttg 68

ttg

Purpose Extract homogeneous transformation from Cartesian trajectory

Synopsis Ti = ttg(T, i)

Description Returns the homogeneous transformation Ti from the i'th row of the Cartesian trajectory

matrix T. Each row of T is a `
attened' homogeneous transform.

Algorithm

Ti = reshape(TC(i,:),4,4)

See Also ctraj

Robotics Toolbox Release 3

unit 69

unit

Purpose Unitize a vector

Synopsis vn = unit(v)

Description unit returns a unit vector aligned with v.

Algorithm
vn =

v

jjvjj

Robotics Toolbox Release 3

