Azionamenti Elettrici Parte 3 Azionamenti per il Controllo Assi

Prof. Alberto Tonielli DEIS - Università di Bologna Tel. 051-6443024

E-mail: atonielli@deis.unibo.it

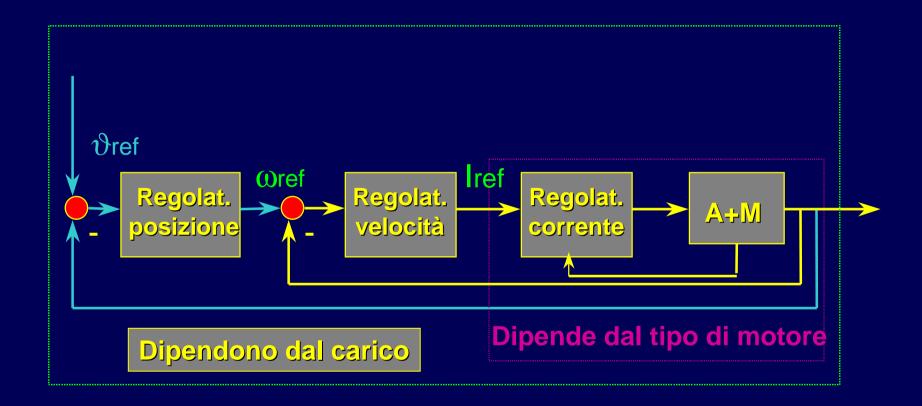
Indice generale del corso

■ Parte 1

- → Introduzione, richiami di Controlli Automatici ed Elettrotecnica
- Generazione elettromagnetica di coppia

■ Parte 2

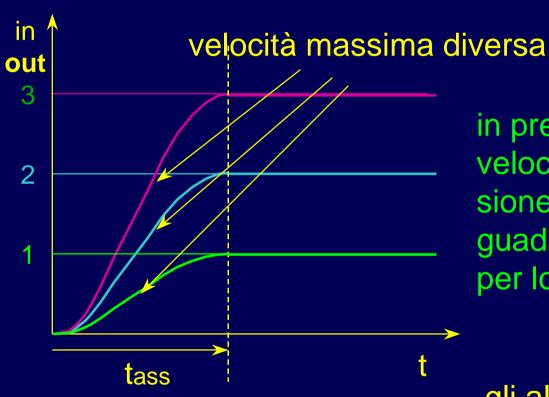
- Tipologie dei motori elettrici e dei relativi azionamenti
 - Motori ed azionamenti C.C.
 - Motori ed azionamenti Brushless (sincroni a magneti permanenti)
 - Motori ed azionamenti Asincroni ad Induzione
 - Motori passo-passo e coppia


■ Parte 3

- Azionamenti per il controllo assi
- Parte 4
 - Scelta dell'azionamento
 - Dimensionamento del motore e dell'amplificatore
 - Esempi di dimensionamento

Indice del Modulo

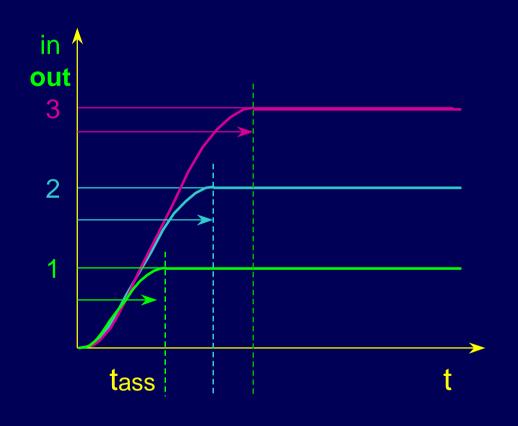
- Schema generale di un Controllo Assi
- Azionamenti per l'Automazione
- Funzioni avanzate di controllo
 - **►** Assi, Camme
- Confronto tra soluzioni
- Azionamenti per il controllo assi
- Evoluzione


Schema di controllo di posizione in cascata

L'anello di posizione di solito è esterno all'azionamento

Controllo di posizione

Risposta di un sistema dinamico lineare


in presenza di vincoli sulla velocità max (limiti di tensione sull'amplificatore) il guadagno va dimensionato per lo spostamento massimo

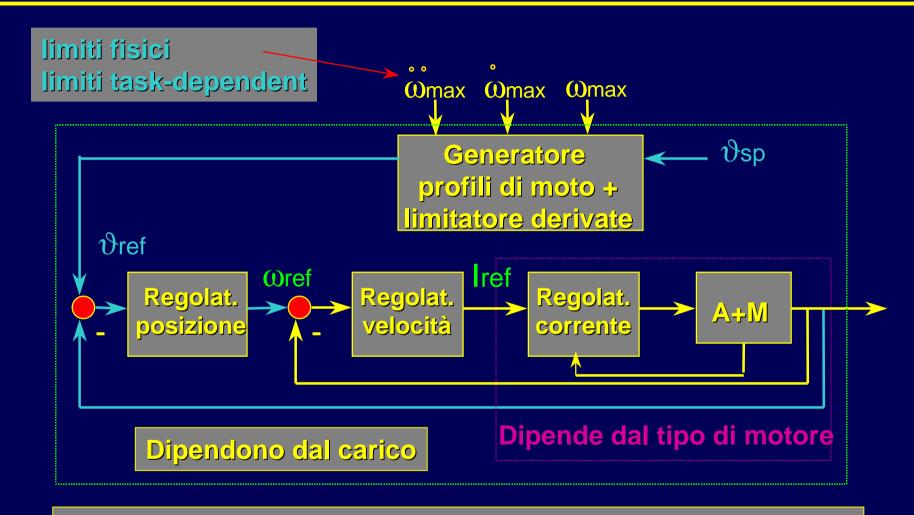
gli altri spostamenti sono inutilmente lenti

Controllo di posizione

Risposta di un sistema dinamico non lineare

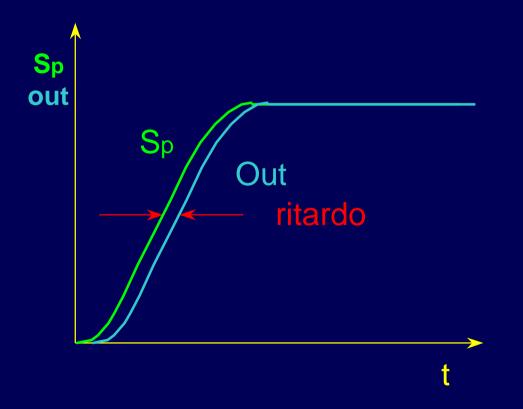
Prof. Alberto Tonielli - DEIS Università di Bologna

- migliore sfruttamento dell'amplificatore
- tempi minimi di spostamento

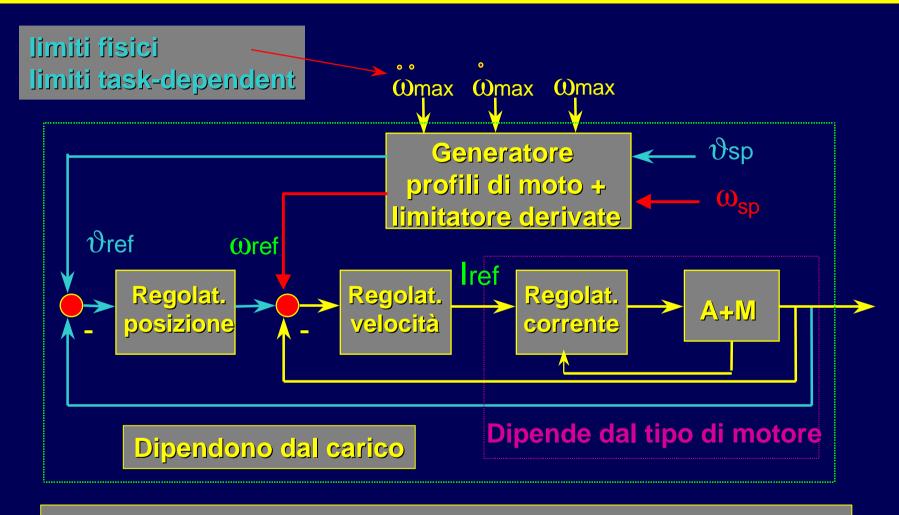


generazione non lineare dei riferimenti

di solito rampe


Schema di controllo in cascata

generazione non lineare del riferimento di posizione


Controllo di posizione

Risposta di un sistema di controllo in cascata

Si può compensare il ritardo introducendo azioni di controllo in avanti (feed-forward)

Schema di controllo in cascata

generazione non lineare del riferimento di posizione

Caratteristiche generali

Affidabilita', Diagnostica, Manutenibilita'

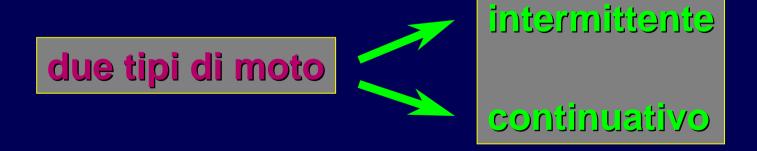
- autodiagnosi, diagnosi remota
- analisi delle situazioni di fermo macchina
- **■** sostituzione senza tarature
- **■** ripetibilita' caratteristiche
- funzionamento in ambiente ostile

Caratteristiche generali

Interfaccia verso la rete di alimentazione

- prestazioni con rete degradata
- microinterruzioni
- fattore di potenza elevato (bassa distorsione)
- rigenerazione in rete
- disturbi elettromagnetici irradiati
- disturbi elettromagnetici condotti sulla rete

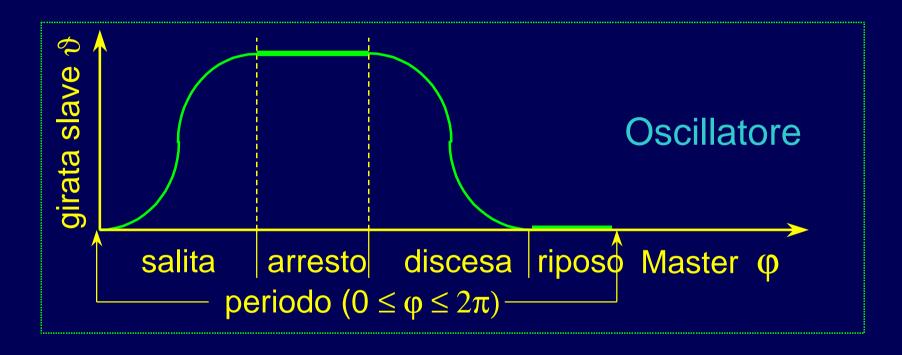
Caratteristiche generali


Controllo di velocita'

- moti regolari ad alta coppia e bassa velocita'
- **velocita' massima anche superiore a quella nominale**
- funzionamento a coppia costante/potenza costante
- capacità di inseguimento di profili complessi di moto
 Tuning dei regolatori
- semplice
- automatico a richiesta dell'operatore
- adattativo durante il funzionamento

sostituzione di sistemi di trasmissione meccanica del moto

generazione di leggi di moto su un motore Slave sincronizzato al movimento di un motore Master


Camma meccanica

dispositivo per la trasformazione di un moto rotativo uniforme in uno periodico con precise relazioni di fase tra i due moti e con controllo delle accelerazioni

Camma elettrica

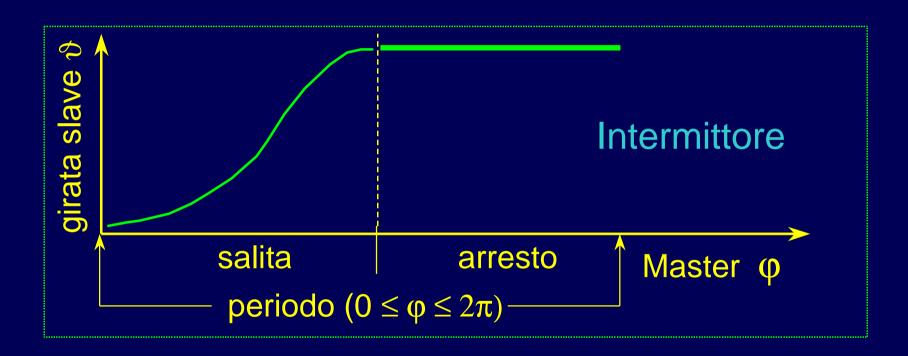
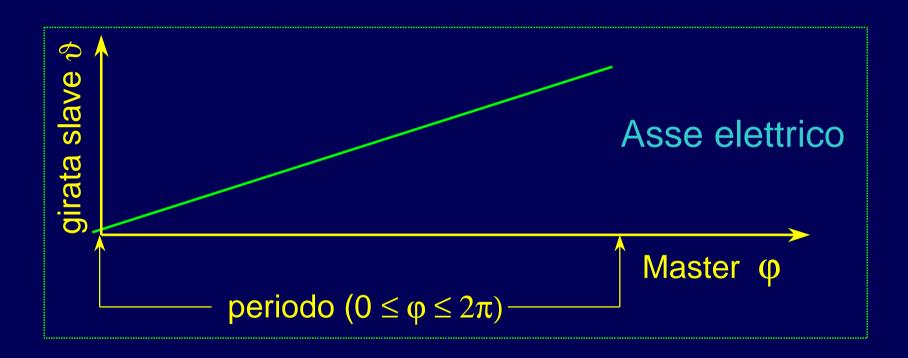

metodo di controllo di un azionamento per la generazione di moti periodici con precise relazioni di fase rispetto al movimento di un altro motore (Master) e con controllo delle accelerazioni

Diagramma delle girate



mostra le posizioni dell'asse slave in funzione di quelle dell'asse master

Funzioni particolari

Funzioni particolari

Specifiche

Asse elettrico

Sincronizzazione di piu' motori

- rapporti trasmissione ≠1
- a regime ed in transitorio
- presenza di coppie di carico impulsive elevate Deviazioni limitate di velocita'
- piccoli sfasamenti agli assi
- Tempi di recupero brevi

Soluzioni

Asse elettrico

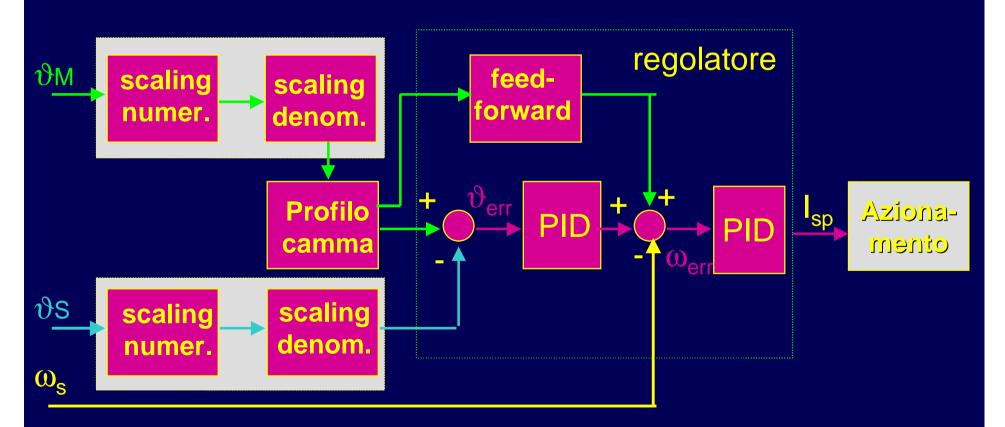
- □ Azionamenti vettoriali con motore sincrono o asincrono + scheda assi specifica
 - sincronizzazione mediante il controllo
 - configurazione master/slave
 - sensore di posizione dell'asse master a tutti gli slave azionamenti ad elevata dinamica
 - azionamento comandato in coppia ed anelli di velocità implementati sul controllo assi

Camma elettrica

Inseguimento di profili complessi di velocità ed accelerazione

- presenza di coppie di carico anche impulsive
- elevata precisione di inseguimento

Elevata dinamica


Sincronismo con altri moti

Soluzioni

Camma elettrica

- Azionamenti vettoriali con motori A.C.
- Controllo digitale con caratteristiche avanzate
- generazione sincronizzata dei profili di camma con tecniche polinomiali
 - → nell'azionamento
 - → nel controllo assi
- azionamento comandato in coppia ed anelli di velocità implementati sul controllo assi

Camma elettrica Schema di controllo Soluzioni

Specifiche

Eliminazione di riduttori meccanici

- Motori in presa diretta
- Elevate coppie continuative da fermo o a bassa velocita'
- Assenza di ripple di coppia durante il moto
- Elevata insensitivita' alle coppie ed alle variazioni di momento di inerzia del carico

Soluzioni

Eliminazione di riduttori meccanici

Uso di motori speciali

- standard A.C. ad elevato numero di poli
- a Riluttanza Variabile

Azionamenti specifici

- elevate coppie a bassa velocita'
- coppia da fermo e senza ripple
- elevata sensibilità nella misura della velocità
- algoritmi di controllo robusti alle coppie di carico ed alle variazioni di inerzia

Confronto tra soluzioni e criteri di scelta

Gli azionamenti con motori in c.a. sono destinati a soppiantare quelli con motori in c.c.

Attualmente

- ➤ Sincrono in sostituzione di c.c. nei controlli assi e dove sono necessarie prestazioni dinamiche elevate
 - gli azionamenti con motore a campo sinusoidale stanno sostituendo quelli a campo trapezoidale
- Asincrono nei controlli a basse prestazioni dinamiche
 - azionamento in catena aperta tipo INVERTER
- **◆ c.c. nelle applicazioni a basso costo**

Confronto tra soluzioni e criteri di scelta

In prospettiva

- elevata dinamica e precisione
 - **→** sincrono sinusoidale
 - dinamiche estreme
 - coppie fino a 25-30 Nm
 - asincrono con controllo vettoriale
 - applicazioni generali
 - potenze elevate
- basse prestazioni dinamiche
 - → asincrono con INVERTER o controllo diretto di coppia

Azionamenti per assi - problemi termici

Per migliorare la risposta dinamica spesso si utilizza un convertitore sovradimensionato (in corrente) rispetto al motore

- il motore è in grado di smaltire il calore generato nel funzionamento ininterrotto alla massima potenza
- transitori effettuati con coppie superiori alla nominale (anche 4-6 volte) comportano riscaldamenti eccessivi
 - → calcolo accurato dei cicli termici
 - metodi riportati nei manuali del costruttore
 - potenza efficace inferiore a quella nominale

Azionamenti per assi - limitazione di corrente

Il convertitore fornisce extracorrente per un tempo limitato

- due casi
 - **→** extracorrente per un tempo fisso
 - **→** extracorrente in funzione della potenza dissipata
 - tempo inversamente proporzionale al valore
- il comportamento dinamico e la capacità di controllare le coppie di carico non sono costanti
 - → assi singoli
 - si può sfruttare l'extracorrente per ottimizzare i costi
 - → assi coordinati
 - per garantire il sincronismo è meglio evitare la saturazione di corrente

Tipologie di controllo, applicazioni e motorizzazioni

Variazione di velocita' (senza retroazione)

- **■** ventole, pompe, trazione,...
 - → asincrono con Inverter o controllo diretto di coppia
 - → c.c. per le piccole potenze o la trazione

Controllo di velocita' (con retroazione)

- **■** tessile, mandrini, macchine automatiche rigide,...
 - **→** sincrono sia trapezoidale che sinusoidale
 - asincrono con Inverter, con controllo diretto di coppia o con controllo vettoriale
 - **▶** passo-passo per piccole potenza
 - → c.c. per applicazioni a basso costo

Tipologie di controllo, applicazioni e motorizzazioni

Controllo di posizione ad asse singolo

- stampanti, posizionatori a singolo asse, semplici manipolatori,..
 - → sincrono e asincrono a controllo vettoriale
 - passo-passo per piccole potenze

Controllo multiasse coordinato (accelerazione, velocita', posizione)

- robot, macchine utensili, macchine automatiche flessibili,...
 - **→** sincrono, asincrono a controllo vettoriale
 - → motore coppia a riluttanza variabile in presa diretta

Criteri di valutazione

Aree di potenza disponibili

- Collettore <10⁶ watt
- Asincrono <10⁶ watt
- Sincrono a MP < 10⁵ watt

Caratteristiche generali

- tipo di motore
- **■** potenza disponibile
- limitazioni di corrente

Criteri di valutazione

Opzioni di controllo

- dinamica assegnabile
- reversibilita'/frenatura
- **sincronizzabilita'**
- coppia da fermo/coppia max
- precisione/risoluzione/disturbi di carico sopportabili
- vincoli sulla dinamica

Tipo di controllo

- velocita'
- posizione
- **■** traiettoria ...

Caratteristiche dell' "ambiente operativo"

Tipo di dinamica

profili di accelerazione /decelerazione

Precisione

- errore statico
- errore dinamico

Tipo di carico

- inerziale
- viscoso
- costante
- variabile

Caratteristiche dell' "ambiente operativo"

Variabili accessibili per la misura

- corrente
- velocita'
- posizione

Ambiente operativo

- vapori infiammabili
- polveri ferromagnetiche
- **■** umidita'

Prospettive di sviluppo

Azionamenti di coppia in presa diretta

- Bassa velocita' ed alta coppia nominali
 - → motori tradizionali in c.a. a molti poli
 - → motori speciali a riluttanza rariabile
 - motori asincroni in esecuzione speciale ed azionamento vettoriale

Azionamenti di potenza ad alta velocita'

- motori sincroni in esecuzione speciale
- motori asincroni con deflussaggio

Motori lineari

■ sincroni, asincroni, passo-passo, riluttanza variabile

Considerazioni conclusive

■ Settore azionamenti in rapida evoluzione

- motori, amplificatori di potenza, architetture ed algoritmi di controllo
- Disponibili o in avanzata fase di sviluppo soluzioni sofisticate di controllo del moto
 - → orientamento di campo, sincronizzazione di piu' assi, inseguimento preciso di riferimenti complessi di velocita'/posizione, elevate velocita'

■ Riduzione dei costi

→ nuovi semiconduttori di potenza, allargamento del mercato, azionamenti digitali.

Aumento dell'affidabilita'

→ intrinseca alle tecnologie utilizzate, sentita come esigenza dai costruttori

Conclusioni

Nuove soluzioni per la generazione del moto nelle macchine automatiche, nei robot e nelle linee di produzione richiede l'azione congiunta di progettisti meccanici, elettronici e di automazione E' necessaria una nuova figura professionale che, integrando le competenze sopracitate, diventi il sistemista dell'Automazione

Azionamenti Elettrici Parte 3 Azionamenti per il Controllo Assi FINE

Prof. Alberto Tonielli DEIS - Università di Bologna Tel. 051-6443024

E-mail: atonielli@deis.unibo.it