# Azionamenti Elettrici Parte 4 Scelta e dimensionamento dell'Azionamento

Prof. Alberto Tonielli
Lezioni del Corso di Perfezionamento:
Macchine Automatiche
per il Confezionamento e l'Imballaggio
DEIS - Università di Bologna
Tel. 051-2093024
E-mail: atonielli@deis.unibo.it

# Indice generale del corso

#### ■ Parte 1

- ▶ Introduzione, richiami di Controlli Automatici ed Elettrotecnica
- Generazione elettromagnetica di coppia

#### ■ Parte 2

- Tipologie dei motori elettrici e dei relativi azionamenti
  - Motori ed azionamenti C.C.
  - Motori ed azionamenti Brushless (sincroni a magneti permanenti)
  - Motori ed azionamenti Asincroni ad Induzione
  - Motori passo-passo e coppia

#### ■ Parte 3

Introduzione al controllo assi

#### ■ Parte 4

- Scelta dell'azionamento
- → Dimensionamento del motore e dell'amplificatore
- Esempi di dimensionamento

#### Indice del Modulo

- Schede riassuntive delle caratteristiche dei diversi azionamenti
- Scelta dell'azionamento
  - → albero decisionale
  - → scelta della tipologia
  - scelta del costruttore
  - → scelta del modello
    - moti uniformi
    - moti ciclici
      - calcolo della coppia efficace (r.m.s.)
      - rapporto di riduzione ottimo
  - problemi termici
  - → scelta del convertitore
  - esempio numerico

# Azionamenti per motore a collettore a MP

| ■ Regolazione                    | ottima                           |
|----------------------------------|----------------------------------|
| □ Inseguimento                   | ottimo                           |
| ■ Risposta dinamica              | <pre>     eccellente </pre>      |
| ■ Extra coppia                   | ■ 6 ÷ 8 con motori speciali      |
| <ul><li>Extra velocità</li></ul> | ■ No                             |
| □ Taglie                         | ■ fino a qualche MW (non per MP) |
| <ul><li>Diffusione</li></ul>     | ■ ampia, in calo. No per nuovo   |
| _ Costo                          | ■ contenuto a bassa potenza      |

# Azionamenti per motore sincrono Trapezoidale

| ■ Regolazione                  | ■ ottima, buona ad alta velocità |
|--------------------------------|----------------------------------|
| <b>□ Inseguimento</b>          | ■ buono                          |
| ■ Risposta dinamica            | ■ buona                          |
| <ul><li>Extra coppia</li></ul> | ■ 2 ÷ 4                          |
| ■ Extra velocità               | ■ No                             |
| _ Taglie                       | ■ < 5 kW                         |
| <ul><li>Diffusione</li></ul>   | ■ ampia, in calo                 |
| _ Costo                        | ■ contenuto                      |

# Azionamenti per motore sincrono Sinusoidale

| ■ Regolazione                  | <ul><li>ottima, cogging a bassissima veloc.</li></ul> |
|--------------------------------|-------------------------------------------------------|
| <b>□ Inseguimento</b>          | eccellente                                            |
| ■ Risposta dinamica            | ■ massima (con motore a bassa inerzia)                |
| <ul><li>Extra coppia</li></ul> | ■ 4 ÷ 6                                               |
| ■ Extra velocità               | ■ No                                                  |
| _ Taglie                       | ■ < 10 kW                                             |
| <ul><li>Diffusione</li></ul>   | <ul><li>ampia, standard industriale</li></ul>         |
| _ Costo                        | ■ elevato, in calo                                    |

# Azionamenti per motore asincrono con Inverter

| ■ Regolazione       | ■ scadente, catena aperta                          |
|---------------------|----------------------------------------------------|
| □ Inseguimento      | scadente                                           |
| □ Risposta dinamica | ■ discreta, dipende dal carico                     |
| ■ Extra coppia      | ■ 2 ÷ 4                                            |
| ■ Extra velocità    | ■ Si                                               |
| _ Taglie            | ■ 0.5 kW ÷ 1MW                                     |
| Diffusione          | <ul><li>amplissima, standard industriale</li></ul> |
| _ Costo             | ■ minimo per kW                                    |

# Azionamenti per motore asincrono Vettoriale

| Regolazione                  | <pre>eccellente</pre>                 |
|------------------------------|---------------------------------------|
| □ Inseguimento               | <pre>eccellente</pre>                 |
| □ Risposta dinamica          | ■ eccellente, legg. infer. a sincrono |
| ■ Extra coppia               | ■ 4 ÷ 6                               |
| ■ Extra velocità             | ■ Si                                  |
| ■ Taglie                     | ■ < 500 kW                            |
| <ul><li>Diffusione</li></ul> | ■ modesta, in grande crescita         |
| _ Costo                      | ■ elevato, in calo. ⇒ +15% Inverter   |

# **Azionamenti per motore Passo passo**

| ■ Regolazione       | ■ buona                      |
|---------------------|------------------------------|
| □ Inseguimento      | ■ buono                      |
| ■ Risposta dinamica | ■ discreta                   |
| ■ Extra coppia      | □ No                         |
| ■ Extra velocità    | ■ No, problemi alta velocità |
| ■ Taglie            | ■ < 5 kW                     |
| Diffusione          | ■ ampia per piccole potenze  |
| _ Costo             | ■ contenuto                  |

# Azionamenti per motore Coppia a RV

| ■ Regolazione                  | ■ ottima. posizion. <10 <sup>-5</sup> rad |
|--------------------------------|-------------------------------------------|
| □ Inseguimento                 | ottimo                                    |
| □ Risposta dinamica            | ■ buona. Presa diretta                    |
| <ul><li>Extra coppia</li></ul> | ■ No                                      |
| ■ Extra velocità               | ■ No                                      |
| _ Taglie                       | ■ < 300 Nm                                |
| □ Diffusione                   | ■ bassissima, Robotica                    |
| _ Costo                        | ■ molto elevato                           |

#### Scelta dell'Azionamento

#### Albero decisionale

Fase 1



Scelta della tipologia

Fase 2



Scelta del costruttore

Fase 3



Scelta del modello

Specifiche sul movimento Classe di potenza/coppia Vincoli di costo

Vincoli di costo Ragioni commerciali Richieste del cliente

Dettagli sul movimento
Dimensionamento motore
Dimensionamento convertitore
Verifiche termiche

#### Scelta dell'Azionamento

# La scelta dell'azionamento va fatta il più presto possibile

- vanno valutati in anticipo
  - → lo spazio per allocare il motore
  - → la necessità di raffreddarlo
  - → il miglior compromesso tra meccanica e azionamento
    - masse
    - momenti di inerzia
    - attriti
    - sistemi di trasmissione

# **Specifiche sul movimento**

- Variazione di velocita' (senza retroazione)
  - → nastri, ventole, pompe, mulini, forni, trazione,...
    - asincrono con Inverter o controllo diretto di coppia
    - c.c. per le piccole potenze o la trazione
    - passo-passo per piccole potenza
- Regolazione di velocita' (con retroazione)
  - → tessile, mandrini, macchine automatiche mono-attuatore,...
    - sincrono sia trapezoidale che sinusoidale
    - asincrono con Inverter, con controllo diretto di coppia o con controllo vettoriale
    - c.c. per applicazioni a basso costo

# **Specifiche sul movimento**

- Regolazione di posizione ad asse singolo
  - **▶** stampanti, pick and place, semplici manipolatori,...
    - sincrono trapezoidale
    - sincrono e asincrono a controllo vettoriale
    - passo-passo per piccole potenze
      - controllo di posizione senza sensore
  - → di solito serve anche una scheda assi
- Inseguimento di posizione ad asse singolo
  - posizionatori a singolo asse
    - sincrono e asincrono a controllo vettoriale
    - passo-passo per piccole potenze
  - serve anche una scheda assi esterna

# **Specifiche sul movimento**

- Inseguimento di posizione multiasse coordinato
  - → robot, macchine utensili,...
    - sincrono, asincrono a controllo vettoriale
    - motore coppia a riluttanza variabile in presa diretta
    - passo passo per piccole potenze
  - serve una scheda assi esterna
- Inseguimento di posizione multiasse sincronizzato
  - → macchine automatiche multiattuatore,...
    - sincrono, asincrono a controllo vettoriale
    - passo passo per le piccole potenze
  - → le funzioni di sincronizzazione possono essere implementate sull'azionamento o su scheda esterna

# Classe di potenza dei motori

- potenza <1kW</p>
  - → passo passo
  - **▶** sicrono trapezoidale/sinusoidale
  - → asincrono
  - → motore coppia a RV
- potenza 1 ÷ 10kW
  - → sincrono sinusoidale/trapezoidale
  - → asincrono
- potenza > 10kW
  - → asincrono
  - → a collettore

# Classe di potenza dei convertitori

- **potenza <1kW (alimentazione monofase 230V)** 
  - **→** MOS-FET o IGBT
- potenza <1kW (alimentazione trifase 400V)</p>
  - **→ IGBT**
- potenza 1 ÷ 500kW
  - **→ IGBT**
- potenza 500 ÷ 1000kW
  - **→ IGBT**
  - **→** GTO
- potenza > 1000kW
  - **→** GTO

#### Scelta del costruttore

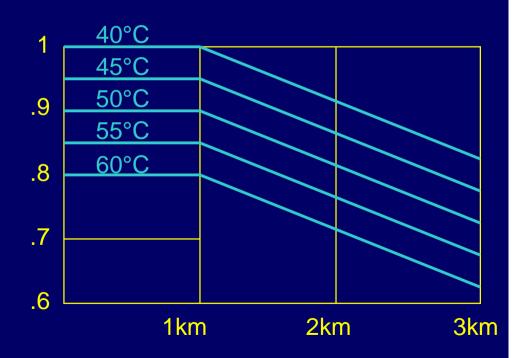
#### L'azienda si serve di fornitori selezionati

- **■** ragioni di diffusione sul mercato
  - → pezzi di ricambio
  - → assistenza
- **■** richieste del cliente
  - → mercato europeo
  - → mercato americano
  - mercato asiatico
- disponibilità dell'azionamento desiderato
  - → non tutti gli azionamenti sono disponibili dallo stesso costruttore
- costi

#### Dimensionamento dell'azionamento

#### Albero decisionale

- descrizione del tipo di movimento
  - → movimenti uniformi
  - → movimenti ciclici
- dimensionamento del motore
  - → velocità massima/extravelocità
  - → potenza
- dimensionamento del convertitore
  - corrente/extracorrente


#### Dimensionamento dell'azionamento

# Utilizzo di azionamenti in condizioni operative non standard

■ altezza (H) e temperatura ambiente (T) condizionano il raffreddamento del motore. Occorre tenerne conto con coefficienti correttivi (≤1) della potenza (coppia).

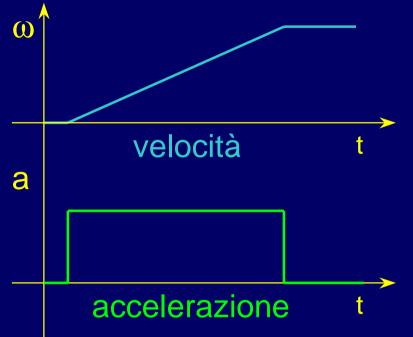
$$K_{H} \cong \left\{ \begin{pmatrix} 1 & H < 1km \\ 1 - \frac{H - 1000}{10000} \end{pmatrix} \right. H > 1km$$

$$K_T \cong \begin{cases} 1 & T < 40^{\circ}C \\ 1 - \frac{T - 40}{100} & T > 40^{\circ}C \end{cases}$$



#### Dimensionamento dell'azionamento

# Descrizione del tipo di movimento


#### ■ Moto quasi uniforme

- → variazione/regolazione di velocità
  - il funzionamento a regime domina sui transitori
  - il carico è prevalentemente dissipativo
  - dimensionamento a regime (potenza)
  - verifica nei transitori (coppia)

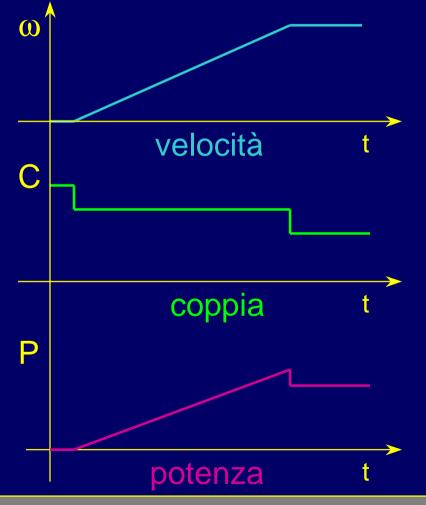
#### ■ Moto ciclico

- → inseguimento di velocità
- → regolazione/inseguimento di posizione
- **→ camme/assi elettrici**
  - i transitori dominano il movimento
  - il carico è prevalentemente inerziale
  - dimensionamento in transitorio (coppia)
  - verifica sul ciclo (potenza)

# Profili di moto al carico



Caso A
i transitori non interessano
il carico principale
è dissipativo


Soluzione da velocità max e tipo di motore



rapporto di riduzione totale



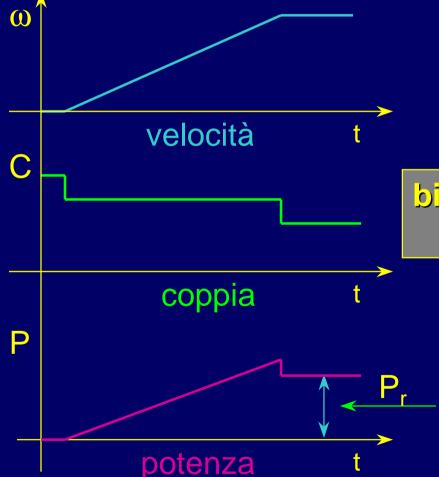
Profili di moto al motore



Caso A
i transitori non interessano
il carico principale
è dissipativo

Soluzione da velocità max e tipo di motore




rapporto di riduzione totale



profili di coppia/potenza all'asse



Profili di moto al motore

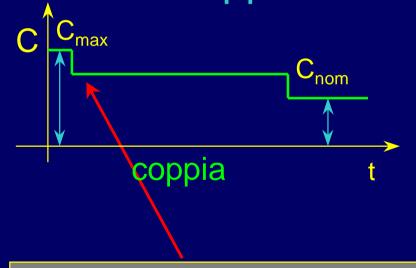


Caso A
i transitori non interessano
il carico principale
è dissipativo

bisogna considerare i rendimenti della catena cinematica

del motore

 $P_{\text{nomM}} \geq P_r / (K_H K_T)$ 


Prof. Alberto Tonielli - DEIS Università di Bologna

Azionamenti Elettrici 5 - 24

Il convertitore deve essere in grado di funzionare alla tensione nominale del motore e va dimensionato per la corrente che deve erogare ⇒ coppia

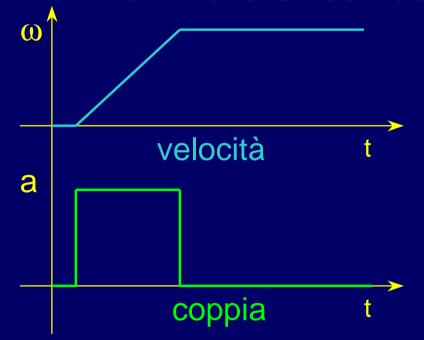
Caso A i transitori non interessano  $C_{max} < (1.5 - 2) C_{nom}$ 

# Profilo di coppia al motore



L'extra-corrente la fornisce il convertitore per un tempo limitato




Il convertitore si dimensiona sul valore di coppia nominale



$$I_{n \text{ om } conv} = \frac{C_{n \text{ om}}}{k_c}$$

#### Profili di moto

# Profili di moto al carico

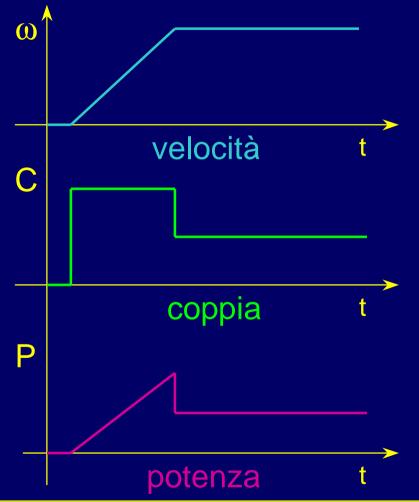


#### Caso B

- i transitori interessano
- anche il carico inerziale è significativo

**Soluzione** 

da


velocità max e tipo di motore



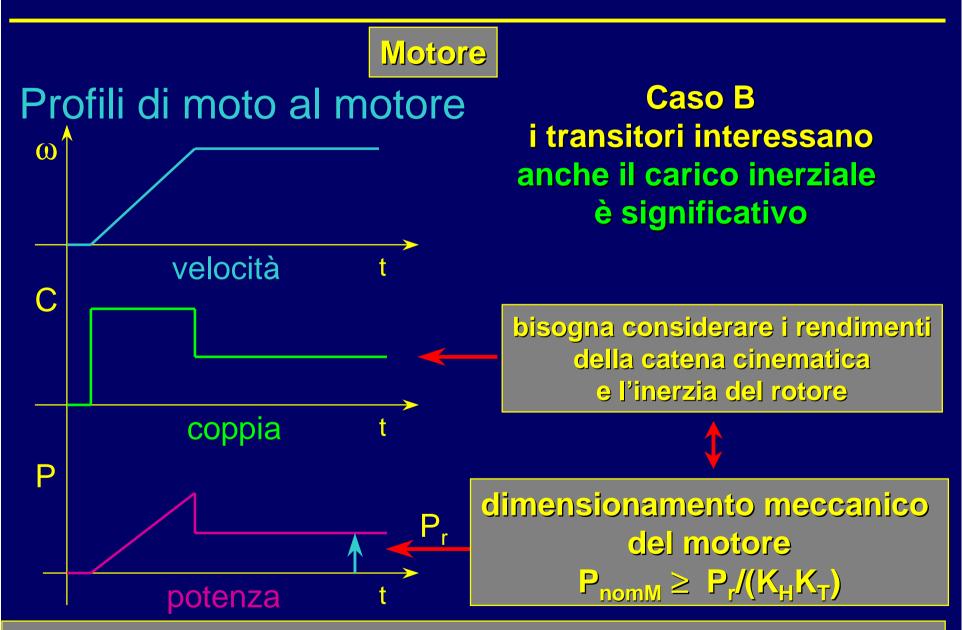
rapporto di riduzione totale



# Profili di moto al motore



Caso B
i transitori interessano
anche il carico inerziale
è significativo

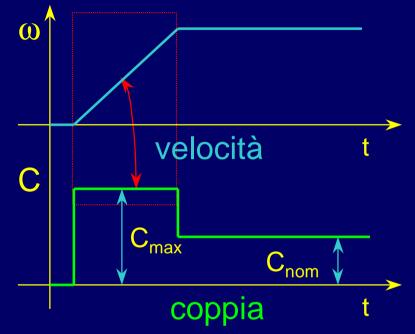

Soluzione da velocità max e tipo di motore



rapporto di riduzione totale



profili di coppia/potenza all'asse




Prof. Alberto Tonielli - DEIS Università di Bologna

Azionamenti Elettrici 5 - 28

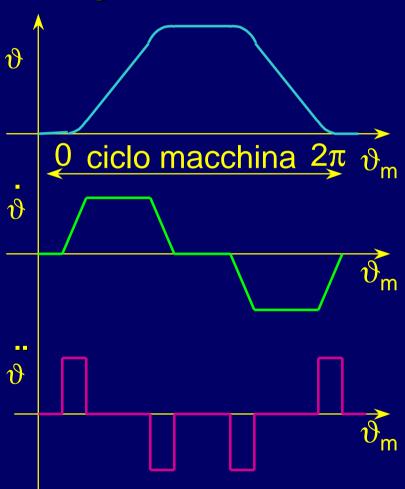
#### Convertitore

# Profili di moto al motore



$$C_{\text{max}} \le K_{\text{extra}} \text{ Cnom}$$

$$I_{n \text{ om } conv} = \frac{C_{n \text{ om}}}{K_{c}}$$


$$C_{\text{max}} > K_{\text{extra}} C_{\text{nom}}$$

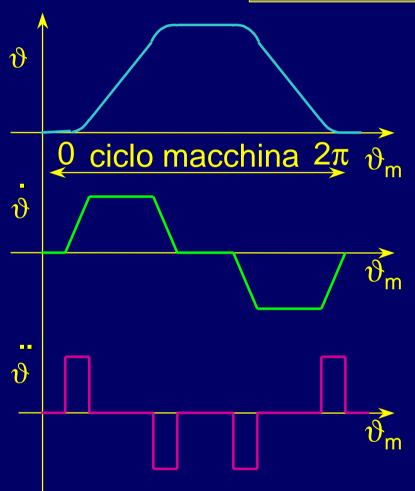
$$I_{n \text{ om } conv} = \frac{C_{\text{max}}}{K_c K_{extra}}$$

 $K_{\text{extra}}$  è la costante di extracorrente dell'azionamento  $I_{\text{max}} = K_{\text{extra}} I_{\text{nom}}$  per un tempo ed un numero di ripetizioni al minuto limitati

#### Profili di moto

#### Profili geometrici di moto




I transitori determinano il dimensionamento il carico inerziale è dominante

In una macchina automatica i profili di moto sono definiti in modo geometrico (posizione dell'asse Slave in funzione di quella dell'asse Master), per poter essere riutilizzati alle diverse velocità operative

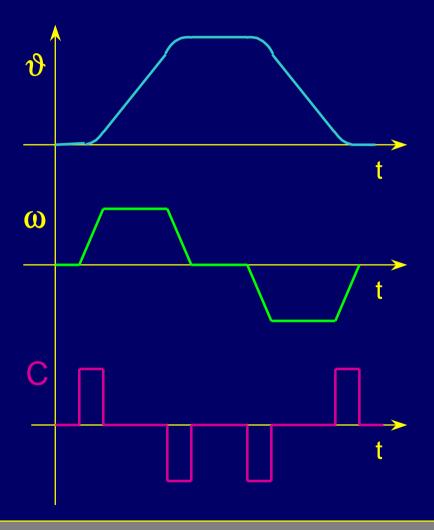
# Il dimensionamento di sistemi in moto ciclico è abbastanza complicato

- gli elementi coinvolti sono
  - calcolo del fattore di servizio
    - dimensionamento termico del motore
  - **→** scelta del rapporto di riduzione ottimale
    - attenzione alla velocità massima
  - → scelta dei profili di moto (approfondita in altra parte del corso)
    - scelta per favorire l'inseguimento da parte dell'azionamento
    - scelta per minimizzare la coppia (massima o efficace) e/o la velocità massima
    - scelta per minimizzare le vibrazioni imposte alla struttura





I transitori determinano il dimensionamento il carico inerziale è dominante


caso peggiore N<sub>max</sub> di battute al min.



Le girate diventano tempi

La procedura di dimensionamento è completamente diversa da quella sviluppata per i moti uniformi e può essere iterativa

# Profili di moto temporali



# ■ Ciclo di servizio intermittente

- Le perdite sul motore non corrispondono linearmente alla potenza trasferita al carico.
- il motore va dimensionato in coppia
- Modello delle perdite

## Modello delle perdite

$$P_{diss-cu} = Ri^2$$

$$C = k_c i$$

$$P_{diss-cu} = KC^2$$

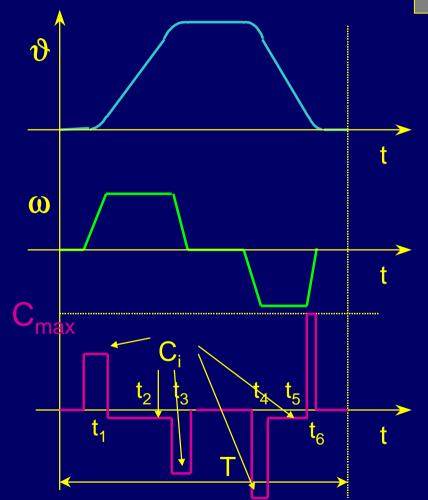


$$\overline{P}_{diss-cu} = Ri_{eff}^2$$

$$C_{eff} = k_c i_{eff}$$

$$\overline{P}_{diss-cu} = KC_{eff}^2$$

Per il motore ad induzione va reinterpretata perché non tutta la corrente produce coppia  $i = i_m + i_c$ 


Il motore è dimensionato in modo da raggiungere il corretto equilibrio termico quando eroga costantemente la potenza nominale



$$\overline{P}_{diss-cu} \le P_{diss\_n \text{ om}} \implies C_{eff} \le C_{n \text{ om}}$$

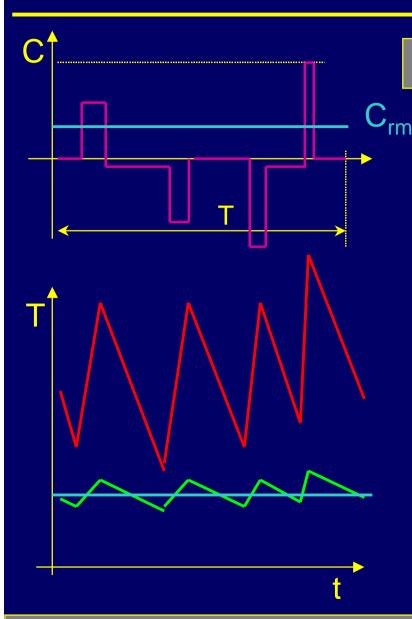
va calcolata

# Modello delle perdite



Coppia efficace (r.m.s.)

$$C_{rms} = \sqrt{\frac{\int_0^T C^2(t)dt}{T}}$$


Nel caso di profili trapezoidali di ω

$$C_{rms} = \sqrt{\frac{\sum C_i^2 * t_i}{T}}$$

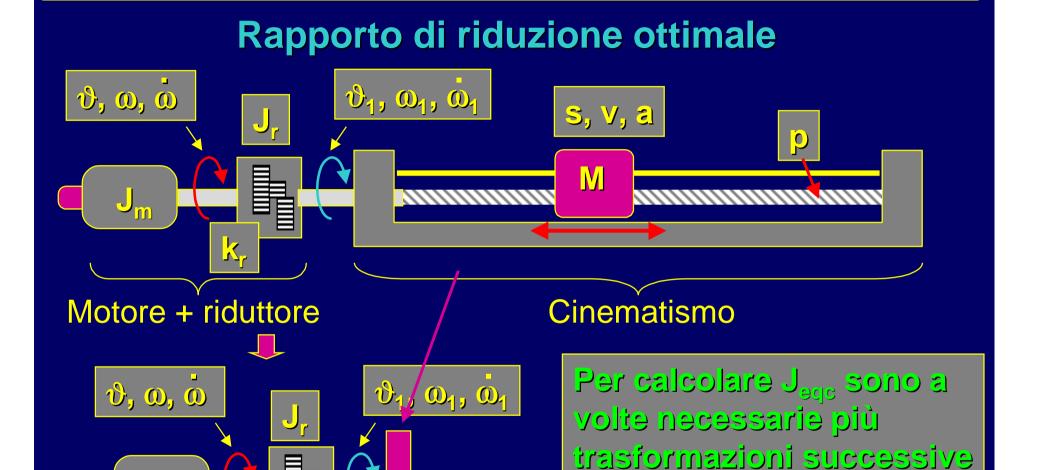
se definiamo 
$$C_i \equiv k_i * C_m \quad k_i \leq 1$$

$$C_{rms} = C_{\max} \sqrt{\frac{\sum k_i^2 * t_i}{T}}$$
 $C_{rms} = \sqrt{\delta} * C_{\max}$ 
 $c_{rms} = \sqrt{\delta} * C_{\max}$ 
 $c_{rms} = \sqrt{\delta} * C_{\max}$ 

La coppia che il motore deve erogare per accelerare il carico dipende dal rapporto di accoppiamento



Effetti termici di un moto ciclico


Gli effetti termici del ciclo portano a dimensionare: il motore  $\Rightarrow C_{rms}$  il convertitore  $\Rightarrow C_{max}$ 

Temperatura dei transistori

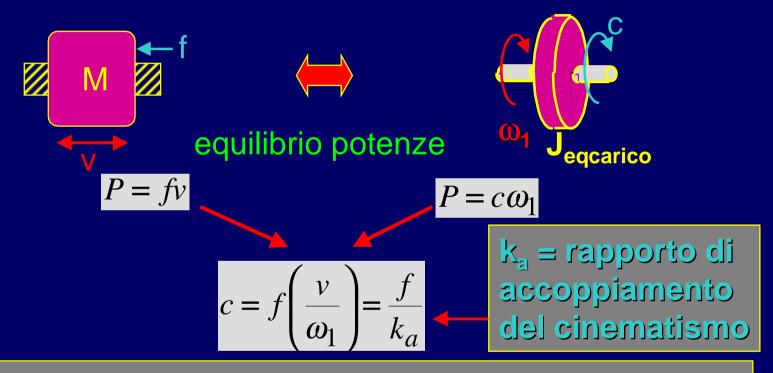
Temperatura del motore

Temperatura del motore con

 $C = Costante = C_{rms}$ 



momento di inerziaequivalente del cinematismo


# Calcolo del momento di inerzia equivalente del cinematismo

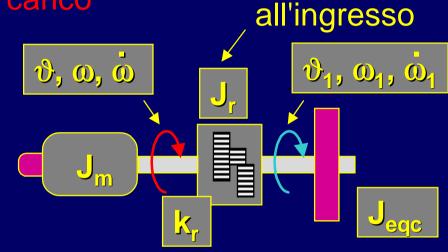


$$J_{eqcarico} = M \left(\frac{v}{\omega_1^2}\right)^2 = \frac{M}{k_a^2}$$
 di accoppiamento del cinematismo

 $k_a = (\omega_1/v)$  rapporto del cinematismo

# Calcolo della coppia equivalente ad una forza di carico sul cinematismo




Gli stessi calcoli energetici si possono utilizzare nel caso di carico rotante (sostituendo  $\omega_2$  a v) o di interconnessione di un riduttore tra il motore e la vite

# Rapporto di riduzione ottimale

$$C_m = (J_m + J_r)\dot{\omega} + \underbrace{\frac{J_{eqc}\dot{\omega}_1}{k_r}}_{\text{al carico}}$$

$$C_m = (J_m + J_r)k_r\dot{\omega}_1 + \frac{J_{eqc}\dot{\omega}_1}{k_r}$$

$$\frac{C_m}{\dot{\omega}_1} = (J_m + J_r)k_r + \frac{J_{eqc}}{k_r}$$



$$\min\left(\frac{C_m}{\dot{\omega}_1}\right)_{k_r} \Rightarrow \frac{d}{dk_r}\left[ (J_m + J_r)k_r + \frac{J_{eqc}}{k_r} \right] = 0 \quad \Longrightarrow \quad (J_m + J_r) - \frac{J_{eqc}}{k_{ropt}^2} = 0$$

$$(J_m + J_r) - \frac{J_{eqc}}{k_{ropt}^2} = 0$$

riferito

$$k_{ropt} = \sqrt{\frac{J_{eqc}}{J_m + J_r}}$$



$$J_m + J_r = \frac{J_{eqc}}{k_{ropt}^2} \equiv J_{eq}$$

## Rapporto di riduzione ottimale

effetto di un rapporto di riduzione non ottimale

$$k_r^* \neq k_{ropt} = nk_{ropt}$$
  $n \ge 1/k_{ropt}$   $(k_r \ge 1)$ 

$$C_m^* = \left[ (J_m + J_r)k_r^* + \frac{J_{eqc}}{k_r^*} \right] \dot{\omega}_c$$

$$C_{mopt} = \left[ (J_m + J_r)k_{ropt} + \frac{J_{eqc}}{k_{ropt}} \right] \dot{\omega}_c$$

$$\frac{C_m^*}{C_{mopt}} = \frac{\left[ (J_m + J_r)k_r^* + \frac{J_{eqc}}{k_r^*} \right] \dot{\omega}_c}{\left[ (J_m + J_r)k_{ropt} + \frac{J_{eqc}}{k_{ropt}} \right] \dot{\omega}_c} = \frac{(J_m + J_r)k_r^{*2} + J_{eqc}}{(J_m + J_r)k_{ropt}^2 + J_{eqc}} \frac{k_{ropt}}{k_r^*}$$

$$\frac{(J_m + J_r)k_r^{*2} + J_{eqc}}{(J_m + J_r)k_{ropt}^2 + J_{eqc}} \frac{k_{ropt}}{k_r^*}$$

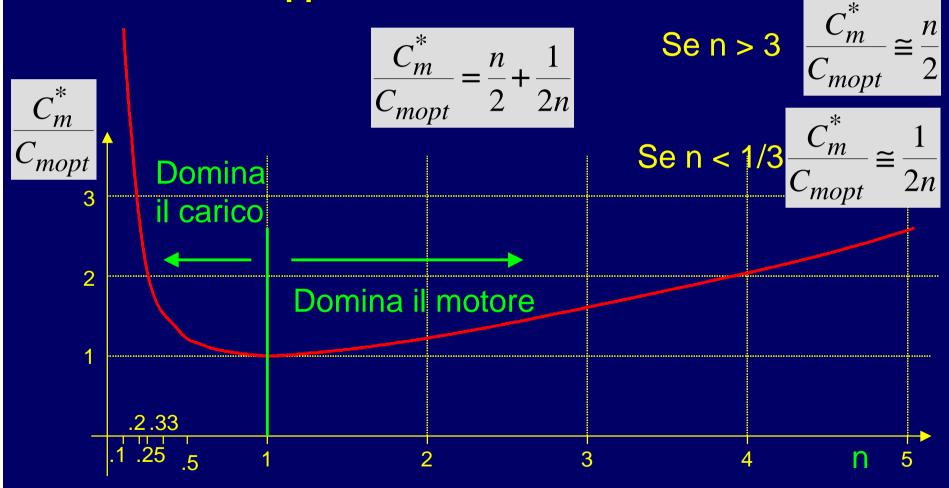
# Rapporto di riduzione ottimale

**■** effetto di un rapporto di riduzione non ottimale

$$\frac{C_m^*}{C_{mopt}} = \frac{(J_m + J_r)k_r^{*2} + J_{eqc}}{(J_m + J_r)k_{ropt}^2 + J_{eqc}} k_{ropt}$$

$$\frac{L_m^*}{L_{mopt}} = \frac{(J_m + J_r)k_r^{*2} + J_{eqc}}{(J_m + J_r)k_{ropt}^2 + J_{eqc}} k_{ropt}$$

$$\frac{C_m^*}{C_{mopt}} = \frac{(J_m + J_r)k_r^{*2}}{2nJ_{eqc}} + \frac{1}{2n}$$


$$(J_m + J_r)k_{ropt}^2$$

$$\frac{C_m^*}{C_{mopt}} = \frac{k_r^{*2}}{2nk_{ropt}^2} + \frac{1}{2n}$$

$$\frac{C_m^*}{C_{mopt}} = \frac{n}{2} + \frac{1}{2n} = \frac{n^2 + 1}{2n}$$

# Rapporto di riduzione ottimale

**■** effetto di un rapporto di riduzione non ottimale



# Rapporto di riduzione ottimale

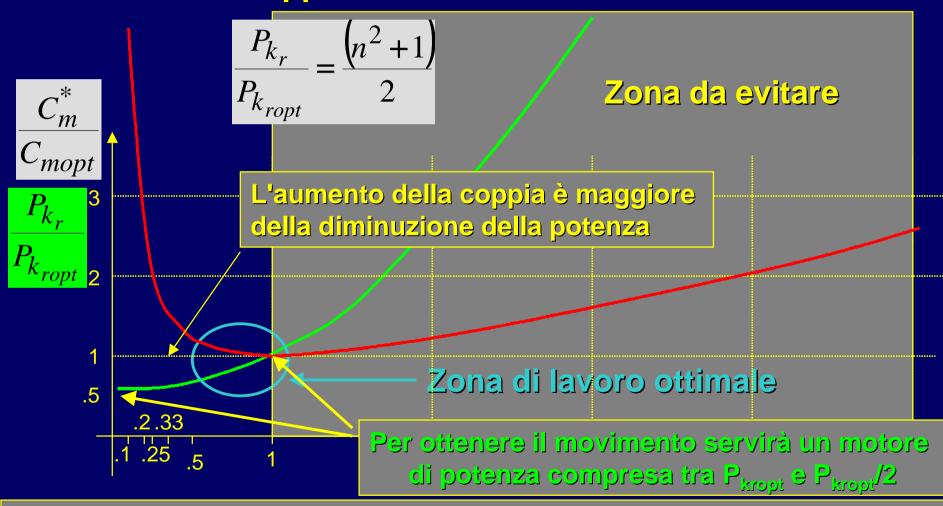
effetto di un rapporto di riduzione non ottimale

$$P^* = (J_m + J_r)\dot{\omega}_m\omega_m + J_{eqc}\dot{\omega}_c\omega_c$$

$$P^* = (J_m + J_r)k_r^* \dot{\omega}_c k_r^* \omega_c + J_{eqc} \dot{\omega}_c \omega_c$$
 
$$k_r^{*2} = n^2 k_{ropt}^2$$

$$k_r^{*2} = n^2 k_{ropt}^2$$

$$P^* = ((J_m + J_r)n^2k_{ropt}^2 + J_{eqc})\dot{\omega}_c\omega_c$$


$$P^* = \left(n^2 J_{eqc} + J_{eqc}\right) \dot{\omega}_c \omega_c$$

$$P^* = (n^2 + 1) I_{eqc} \dot{\omega}_c \omega_c$$

$$\frac{P^*}{P_{k_{ropt}}} = \frac{(n^2 + 1)J_{eqc}\dot{\omega}_c\omega_c}{2J_{eqc}\dot{\omega}_c\omega_c} = \frac{(n^2 + 1)}{2}$$

# Rapporto di riduzione ottimale

**■** effetto di un rapporto di riduzione non ottimale



Prof. Alberto Tonielli - DEIS Università di Bologna

Azionamenti Elettrici 5 - 45

# Rapporto di riduzione ottimale

effetto di riduzione della coppia causato dal rapporto di riduzione ottimale rispetto all'accoppiamento diretto

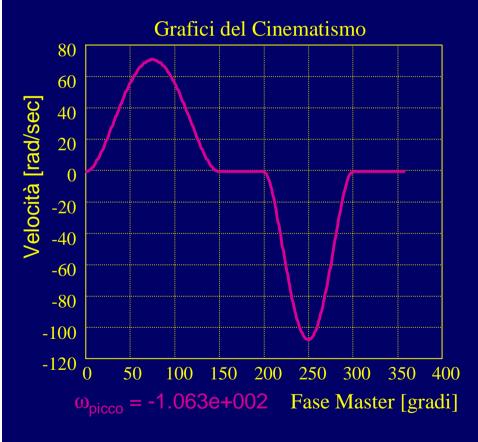
$$C_{mopt} = \frac{2n}{1+n} C_{dd}$$
 Se k<sub>r</sub> = 1   
n = 1/k<sub>ropt</sub>

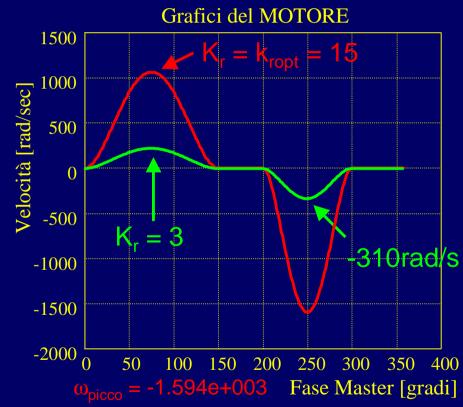
$$C_{mopt} = \frac{2/k_{ropt}}{1+1/k_{ropt}^2} C_{dd} = \frac{2k_{ropt}}{1+k_{ropt}^2} C_{dd}$$

#### direct drive

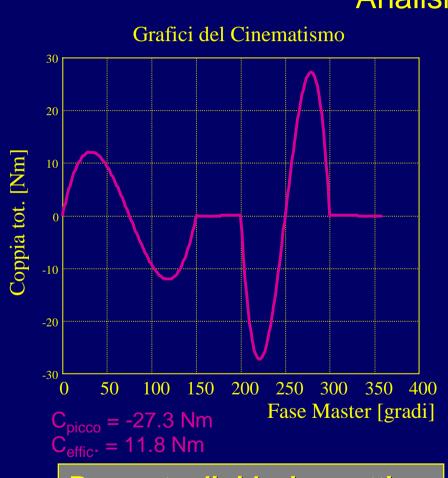
Se 
$$k_{\text{ropt}} >> 1 \ (>3)$$
  $C_{mopt} \cong \frac{C_{dd}}{\left(\frac{k_{ropt}}{2}\right)}$ 

Quando il rapporto di riduzione ottimo è grande, l'accoppiamento in presa diretta del motore è da evitare

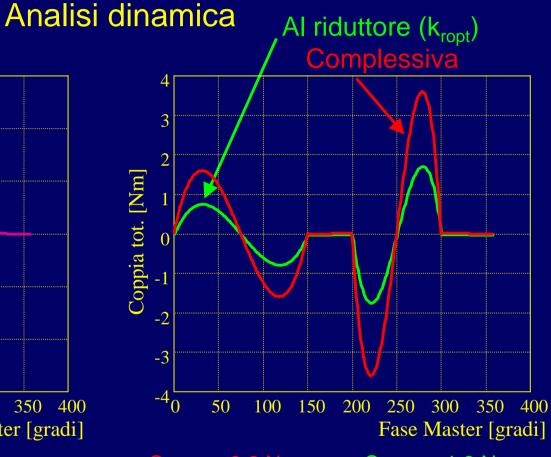

Il rapporto di riduzione ottimo può non essere possibile in relazione alla  $\omega_{max}$  del motore




Scegliere k<sub>r</sub> per massimizzare la velocità massima del motore nel ciclo


# Rapporto di riduzione ottimale

#### Analisi cinematica



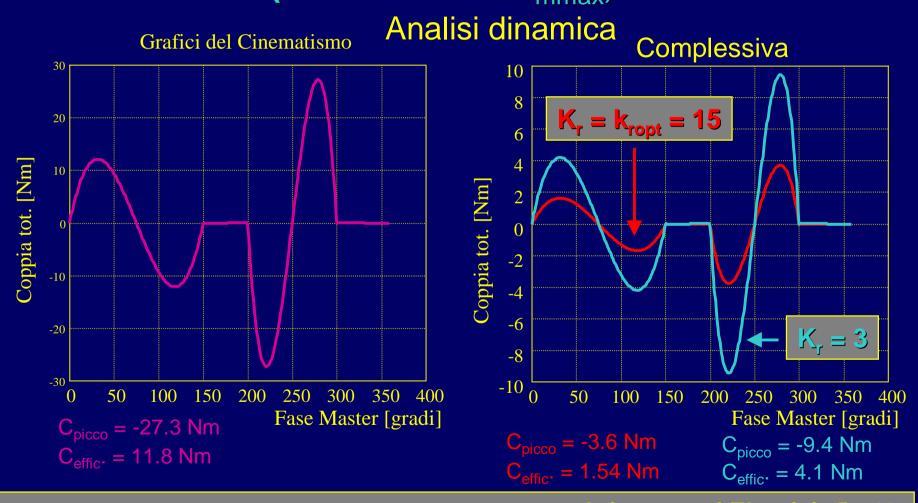



# Rapporto di riduzione ottimale



Rapporto di riduzione ottimo




 $C_{\text{picco}} = -3.6 \text{ Nm}$ 

 $C_{effic.} = 1.56 \text{ Nm}$ 

 $C_{picco} = -1.8 \text{ Nm}$ 

 $C_{\text{effic}} = 0.78 \text{ Nm}$ 

# Rapporto di riduzione non ottimale (vincolato da $\omega_{mmax}$ )



# Confronto tra diversi rapporti di riduzione

$$C_{mopt} \cong \frac{C_m}{k_{ropt}/2}$$

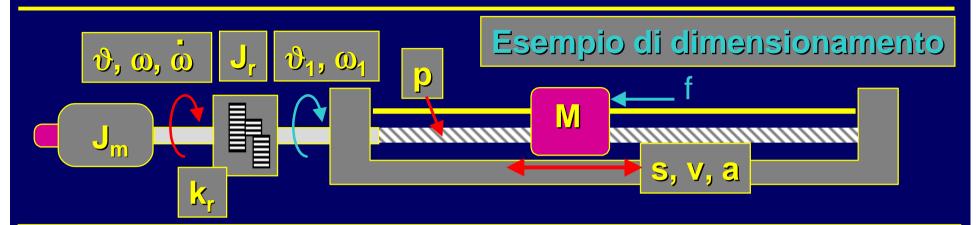
In presa diretta  $(k_r = 1)$ 

Riduttore ottimo  $(k_r = 15)$ 

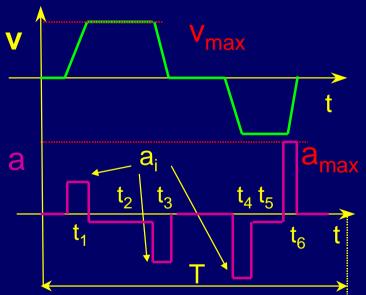
Riduttore ammissibile  $(k_r = 3)$ 

 $C_{\text{picco}} = -27.3 \text{ Nm}$ 

 $C_{\text{effic}} = 11.8 \text{ Nm}$ 


 $C_{picco} = -3.6 \text{ Nm}$ 

 $C_{\text{effic}} = 1.54 \text{ Nm}$ 


 $C_{\text{picco}} = -9.4 \text{ Nm}$ 

 $C_{\text{effic.}} = 4.1 \text{ Nm}$ 

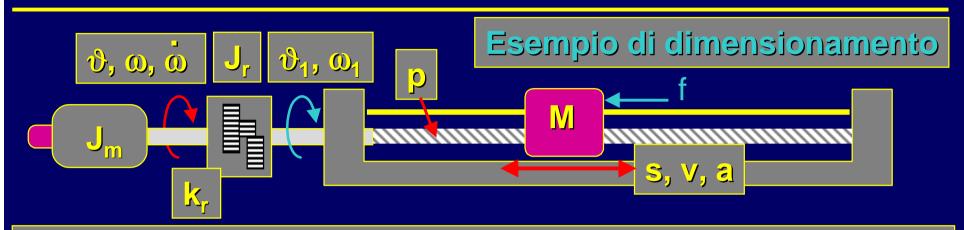
E' evidente l'opportunità, quando è possibile, di avvicinarsi al rapporto di riduzione ottimo



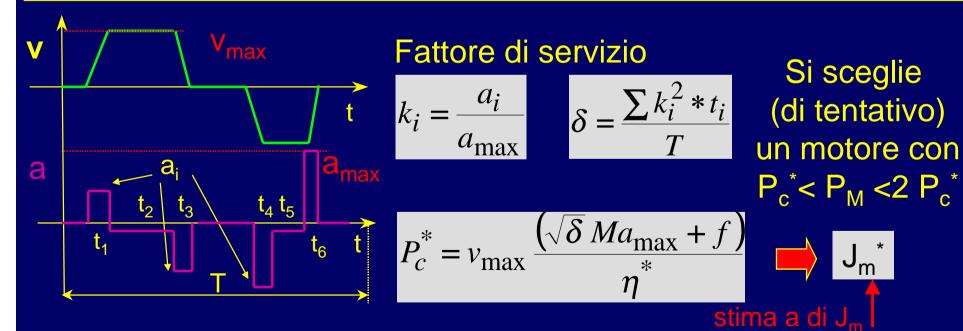
#### Passo 1 - Stima della potenza necessaria a muovere il carico



E' l'unico dato che posso calcolare a priori, senza aver scelto il motore.

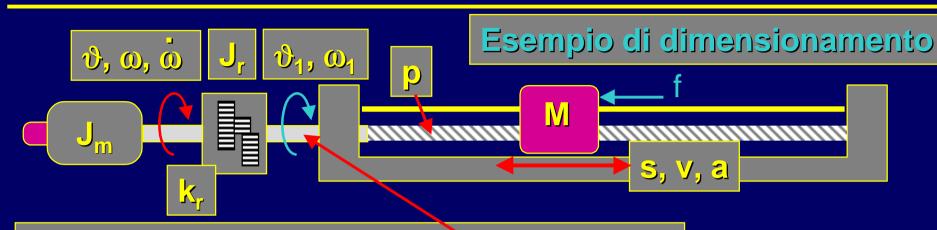

Serve per avere una idea della classe di motore e quindi delle sue velocità massima ed inerzia, necessari per definire il rapporto di riduzione

Forza efficace
$$P_c^* = v_{\text{max}} \xrightarrow{\sqrt{\delta} Ma_{\text{max}} + f} P_c^* < P_M < 2P_c^*$$


Rendimento meccanico

Prof. Alberto Tonielli - DEIS Università di Bologna

Azionamenti Elettrici 5 - 51




Passo 1 - Stima della potenza necessaria a muovere il carico



Prof. Alberto Tonielli - DEIS Università di Bologna

Azionamenti Elettrici 5 - 52



# Passo 2 - Calcolo del rapporto di riduzione

$$k_a = \frac{\omega_1}{v}$$

$$\omega_{1 \max} = k_a v_{\max}$$

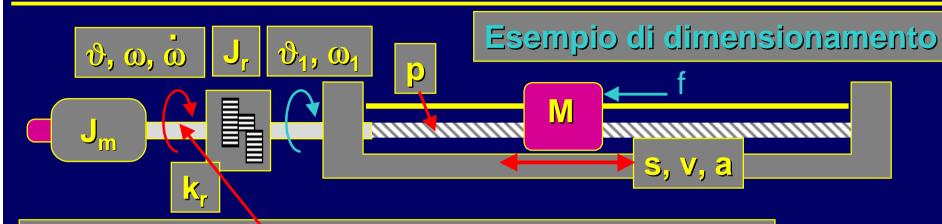
$$\dot{\omega}_{1 \max} = k_a a_{\max}$$



$$J_{eqc} = \frac{M}{k_a^2}$$

k, deve generare o<sub>maxM</sub> compatibile con il motore prescelto

$$k_{ropt}^* = \sqrt{\frac{J_{eqc}}{J_m^*}}$$


$$\omega_{\max}^* = k_{ropt}^* \omega_{1\max}$$

$$\omega_{\max}^* \le \omega_{\max M}^*$$

$$\omega_{\max} > \omega_{\max M}$$

$$k_r^* = k_{ropt}^*$$

$$k_r^* = \frac{\omega_{\max M}}{\omega_{1 \max}}$$



## Passo 3 - calcolo dei parametri all'albero motore

$$\omega_{max} = k_r k_a v_{max}$$
$$\dot{\omega}_{max} = k_r k_a a_{max}$$

$$J_{eq} = \frac{J_{eqc}}{k_r^2}$$

Se

$$\frac{C_{max}}{\eta} < C_{maxM}$$

$$\frac{(C_{rms} + f/k_a)}{\eta K_T K_H} < C_{nomM}$$

Motore O.K.

$$\boldsymbol{J}_{tot}^* = \boldsymbol{J}_m^* + \boldsymbol{J}_r + \boldsymbol{J}_{eq}$$

$$C_{rms} = \sqrt{\delta} \left( J_{tot} \dot{\omega}_{\text{max}} \right)$$

$$C_{max} = J_{tot}\dot{\omega}_{max} + f/k_r k_a$$

altrimenti



Ripetere dal passo 2 con motore più grande

#### Problemi termici al convertitore

# Il convertitore fornisce extracorrente ( $k_{extra}I_{nom}$ ) per un tempo limitato ( $k_{extra} = 1.5 \div 3$ )

- due casi
  - extracorrente per un tempo fisso
  - extracorrente in funzione della potenza dissipata
    - tempo inversamente proporzionale al valore
- il comportamento dinamico e la capacità di controllare le coppie di carico non sono costanti
  - → assi singoli
    - si può sfruttare l'extracorrente per ottimizzare i costi
  - → assi coordinati
    - per garantire il sincronismo occorre fare molta attenzione alla saturazione di corrente

#### Dimensionamento del motore

$$C_{nomM} \ge \frac{C_{rms}}{K_H K_T}$$

Termico

Meccanico

La procedura è di solito iterativa perché nel calcolo delle coppie entra anche l'inerzia del motore, che non è nota prima di averlo dimensionato

#### Dimensionamento del convertitore

$$\begin{split} I_{nom} &\geq \frac{C_{rms}}{K_c} & se \, C_{max} \leq K_{extra} C_{rms} \\ I_{nom} &\geq \frac{C_{max}}{K_c K_{extra}} & se \, C_{max} > K_{extra} C_{rms} \end{split}$$

l'extracorrente la fornisce il convertitore

va dimensionato sulla coppia massima

K<sub>c</sub> = costante di coppia del motore (Nm/a)

# Azionamenti Elettrici Parte 4 Scelta e dimensionamento dell'Azionamento FINE

**Prof. Alberto Tonielli** 

Lezioni del Corso di Perfezionamento:

Macchine Automatiche
per il Confezionamento e l'Imballaggio

DEIS - Università di Bologna

Tel. 051-2093024

E-mail: atonielli@deis.unibo.it